Logo Header
  1. Môn Toán
  2. Đề thi học kì 1 Toán 6 - Đề số 3

Đề thi học kì 1 Toán 6 - Đề số 3

Đề thi học kì 1 Toán 6 - Đề số 3: Chuẩn bị tốt nhất cho kỳ thi

Chào mừng các em học sinh lớp 6 đến với đề thi học kì 1 Toán 6 - Đề số 3 của giaitoan.edu.vn. Đề thi này được biên soạn dựa trên chương trình học Toán 6, bao gồm các dạng bài tập thường gặp trong đề thi chính thức.

Mục tiêu của đề thi này là giúp các em làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự đánh giá năng lực của bản thân trước khi bước vào kỳ thi quan trọng.

Phần I: Trắc nghiệm (4 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Đề bài

    Phần I: Trắc nghiệm (4 điểm).

    Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

    Câu 1. Phần tử nào không thuộc tập hợp \(A = \left\{ {\left. {x \in \mathbb{N}} \right|10 \le x < 20} \right\}\)

    A. \(20\)

    B. \(10\)

    C. \(19\)

    D. \(15\) 

    Câu 2. Bội chung nhỏ nhất của \(12;15;18\) là:

    A. \(360\)

    B. \(180\)

    C. \(450\)

    D. \(90\)

    Câu 3. Lũy thừa với số mũ là \(5\) cơ số là \(12\) được viết là:

    A. \({12^5}\)

    B. \({5^{12}}\)

    C. \({51^2}\)

    D. \({21^5}\)

    Câu 4. Số nào chia hết cho \(5\) nhưng không chia hết cho \(9\)?

    A. \(180\)

    B. \(225\)

    C. \(405\)

    D. \(305\)

    Câu 5. Chiếc diều của bạn Minh bay cao \(15m\) (so với mặt đất). Sau một lúc, độ cao của chiếc diều tăng \(2m\), rồi sau đó lại giảm \(3m\). Hỏi chiếc diều ở độ cao bao nhiêu (so với mặt đất) sau hai lần thay đổi?

    A. \(13m\)

    B. \(14m\)

    C.\(16m\)

    D. \(21m\)

    Câu 6. Tập hợp chỉ gồm các số nguyên tố?

    A. \(\left\{ {1\,;\,2\,;\,5\,;\,7} \right\}\)

    B. \(\left\{ {3\,;\,10\,;\,7\,;\,13} \right\}\)

    C. \(\left\{ {3\,;\,5\,;\,7\,;\,11} \right\}\)

    D. \(\left\{ {13\,;\,15\,;\,17\,;\,19} \right\}\)

    Câu 7. Trong các số nguyên sau: \(\left( { - 2022} \right)\,;\,\left( { - 2000} \right)\,;\,\left( { - 2021} \right)\,;\,\left( { - 1999} \right)\). Số lớn nhất là:

    A. \( - 1999\)

    B. \( - 2022\)

    C. \( - 2000\)

    D. \( - 2021\)

    Câu 8. Trong các hình dưới đây, hình nào có tâm đối xứng?

    Đề thi học kì 1 Toán 6 - Đề số 3 0 1

    A. Tam giác đều

    B. Cánh quạt

    C. Trái tim

    D. Cánh diều

    Câu 9. Một khu vườn thoi có độ dài hai đường chéo lần lượt là \(8m\) và \(6m\). Khi đó, diện tích khu vườn là:

    A. \(24{m^2}\)

    B. \(12{m^2}\)

    C. \(48{m^2}\)

    D. \(36{m^2}\)

    Câu 10. Một thửa ruộng hình bình hành có cạnh \(30m\) chiều cao tương ứng \(12m.\) Người ta trồng lúa trên mảnh ruộng, năng suất lúa là \(0,8\,kg/{m^2}.\) Tính sản lượng lúa thu hoạch được của thửa ruộng đó.

    A. \(228\,kg\)

    B. \(288\,kg\)

    C. \(360\,kg\)

    D. \(144\,kg\)

    Phần II. Tự luận (6 điểm):

    Bài 1. (1,0 điểm) Thực hiện phép tính:

    a) \(35 - \left\{ {12 - \left[ {\left( { - 14} \right) + \left( { - 2} \right)} \right]} \right\}\)

    b) \(1997 - \left[ {10.\left( {{4^3} - 56} \right):{2^3} + {2^3}} \right]{.2023^0}\)

    Bài 2. (1,0 điểm) Tìm \(x\), biết:

    a) \(124 + \left( {118 - x} \right) = 217\)

    b) \({3^{x + 2}} + {3^x} = 10\)

    Bài 3. (1,5 điểm) Trong cuộc thi HSG cấp tỉnh có ba môn Toán, Văn, Anh; số học sinh tham gia như sau: Văn có 96 học sinh, Toán có 120 học sinh và Anh có 72 học sinh. Trong buổi tổng kết các bạn được tham gia phân công đứng thành hàng dọc sao cho mỗi hàng có số bạn thi mỗi môn bằng nhau. Hỏi có thể phân học sinh đứng thành ít nhất bao nhiêu hàng?

    Bài 4. (2 điểm) Trong mảnh vườn hình chữ nhật có chiều dài \(6m\), chiều dài \(8m\), người ta trồng hoa hồng trong mảnh đất hình thoi như hình bên (mỗi đỉnh của hình thoi nằm chính giữa các cạnh của hình chữ nhật). Nếu mỗi mét vuông trồng được \(3\) cây hoa thì cần bao nhiêu cây để trồng mảnh đất hình thoi đó?

    Đề thi học kì 1 Toán 6 - Đề số 3 0 2

    Bài 5. (0,5 điểm) Cho \(B = 3 + {3^2} + {3^3} + ... + {3^{2014}} + {3^{2015}}\). Chứng minh rằng \(2B + 3\) là một lũy thừa của \(3\).

    Lời giải

      Phần I: Trắc nghiệm

      1. A

      2. B

      3. A

      4. D

      5. B

      6. C

      7. A

      8. B

      9. A

      10. B

      Câu 1

      Phương pháp:

      Liệt kê các phần tử của một tập hợp, sau đó kiểm tra xem phần tử có thuộc tập hợp hay không.

      Cách giải:

      Ta có: \(A = \left\{ {10;11;12;13;14;15;16;17;18;19} \right\}\).

      Khi đó, nhận thấy \(20 \notin A\)

      Chọn A.

      Câu 2

      Phương pháp:

      Tìm bội chung nhỏ nhất của ba số tự nhiên bằng cách phân tích các số thành tích các số nguyên tố.

      Cách giải:

      Ta có: \(12 = {2^2}.3;15 = 3.5;18 = {2.3^2} \Rightarrow \)BCNN\(\left( {12,15,18} \right) = {2^2}{.3^2}.5 = 4.9.5 = 180\).

      Chọn B.

      Câu 3

      Phương pháp:

      Sử dụng định nghĩa lũy thừa với số mũ tự nhiên.

      Cách giải:

      Lũy thừa với số mũ là \(5\) cơ số là \(12\) được viết là: \({12^5}\)

      Chọn A.

      Câu 4

      Phương pháp:

      Sử dụng dấu hiệu chia hết cho \(5\) và \(9\).

      Cách giải:

      Ta có:

      Số \(180\) có chữ số tận cùng là \(0\) nên chia hết cho \(5\) và \(1 + 8 + 0 = 9 \vdots 9 \Rightarrow 180 \vdots 9\).

      Số \(225\) có chữ số tận cùng là \(5\) nên chia hết cho \(5\) và \(2 + 2 + 5 = 9 \vdots 9 \Rightarrow 225 \vdots 9\).

      Số \(405\) có chữ số tận cùng là \(5\) nên chia hết cho \(5\) và \(4 + 0 + 5 = 9 \vdots 9 \Rightarrow 405 \vdots 9\).

      Số \(305\) có chữ số tận cùng là \(5\) nên chia hết cho \(5\). Nhưng \(3 + 0 + 5 = 8\not{ \vdots }9 \Rightarrow 305\not{ \vdots }9\).

      Chọn D.

      Câu 5

      Phương pháp:

      Căn cứ vào yêu cầu đề bài, phân tích và đưa bài toán về thực hiện phép cộng với các số nguyên cho trước.

      Cách giải:

      Sau hai lần thay đổi, chiếc diều ở độ cao:

      \(15 + 2 + \left( { - 3} \right) = 14\left( m \right)\)

      Chọn B.

      Câu 6

      Phương pháp:

      Vận dụng định nghĩa số nguyên tố .

      Chú ý: số \(0\) và số \(1\) không là số nguyên tố; số \(2\) là số nguyên tố chẵn duy nhất.

      Cách giải:

      Ta có:

      + \(0\) không là số nguyên tố nên loại đáp án A

      + \(10\) là hợp số nên loại đáp án B

      + tất cả các phần tử đều là số nguyên tố nên chọn đáp án C

      + \(15\) là hợp số nên loại đáp án D.

      Chọn C.

      Câu 7

      Phương pháp:

      Vận dụng các bước làm so sánh hai số nguyên âm, ta làm như sau:

      + Bước 1: Bỏ dấu “\( - \)” trước hai số nguyên âm

      + Bước 2: Trong hai số nguyên dương nhận được, số nào nhỏ hơn thì số nguyên âm ban đầu (trước khi bỏ dấu “\( - \)”) sẽ lớn hơn.

      Cách giải:

      Vì nên \( - 1999 > - 2000 > - 2021 > - 2022\)

      Vậy \( - 1999\) là số nguyên âm lớn nhất\(1999 < 2000 < 2021 < 2022\)

      Chọn A.

      Câu 8

      Phương pháp:

      Sử dụng định nghĩa tâm đối xứng

      Cách giải:

      Đề thi học kì 1 Toán 6 - Đề số 3 1 1

      Nhận thấy chỉ có hình cánh quạt có tâm đối xứng.

      Chọn B.

      Câu 9

      Phương pháp:

      Sử dụng công thức tính diện tích hình thoi có độ dài hai đường chéo là \(m,n\) thì \(S = \dfrac{1}{2}m.n\)

      Cách giải:

      Diện tích của khu vườn là: \(\dfrac{1}{2}.8.6 = 24\left( {{m^2}} \right)\)

      Chọn A.

      Câu 10

      Phương pháp:

      Vận dụng công thức tính diện tích hình bình hành có hai cạnh là \(a,b\), có chiều cao tương ứng của cạnh \(a\) là \(h\) khi đó \(S = a.h\)

      Sản lượng lúa thu được = diện tích của thửa ruộng \( \times \) năng suất của \(1\,{m^2}\)

      Cách giải:

      Diện tích của thửa ruộng là: \(12.30 = 360\left( {{m^2}} \right)\)

      Sản lượng lúa thu hoạch được của thửa ruộng là: \(360.0,8 = 288\left( {kg} \right)\)

      Chọn B.

      Phần II: Tự luận

      Bài 1

      Phương pháp:

      Biểu thức có ngoặc thực hiện theo thứ tự \(\left( {\,\,\,} \right) \to \left[ {\,\,\,} \right] \to \left\{ {\,\,\,} \right\}\)

      Vận dụng quy tắc bỏ ngoặc có dấu “\( - \)” ở trước.

      Thực hiện các phép toán với số nguyên.

      Vận dụng kiến thức lũy thừa của một số tự nhiên.

      Cách giải:

      a) \(35 - \left\{ {12 - \left[ {\left( { - 14} \right) + \left( { - 2} \right)} \right]} \right\}\)

      \(\begin{array}{l} = 35 - \left[ {12 - \left( { - 16} \right)} \right]\\ = 35 - \left( {12 + 16} \right)\\ = 35 - 28\\ = 7\end{array}\)

      b) \(1997 - \left[ {10.\left( {{4^3} - 56} \right):{2^3} + {2^3}} \right]{.2023^0}\)

      \(\begin{array}{l} = 1997 - \left[ {10.\left( {64 - 56} \right):8 + 8} \right].1\\ = 1997 - \left( {10.8:8 + 8} \right)\\ = 1997 - \left( {80:8 + 8} \right)\\ = 1997 - \left( {10 + 8} \right)\\ = 1997 - 18\\ = 1979\end{array}\)

      Bài 2

      Phương pháp:

      a) Thực hiện các phép toán với số tự nhiên.

      b) Vận dụng kiến thức lũy thừa với số mũ tự nhiên

      Hai lũy thừa cùng cơ số bằng nhau khi số mũ của chúng bằng nhau.

      Cách giải:

      a) \(124 + \left( {118 - x} \right) = 217\)

      \(\begin{array}{l}118 - x = 217 - 124\\118 - x = 93\\x = 118 - 93\\x = 25\end{array}\)

      Vậy \(x = 25\)

      b) \({3^{x + 2}} + {3^x} = 10\)

      \(\begin{array}{l}{3^x}{.3^2} + {3^x} = 10\\{3^x}.\left( {{3^2} + 1} \right) = 10\\{3^x}.10 = 10\\{3^x} = 1\\{3^x} = {3^0}\\x = 0\end{array}\)

      Vậy \(x = 0\)

      Bài 3

      Phương pháp:

      Gọi số học sinh mỗi hàng là \(x\,\,\left( {x \in {\mathbb{N}^*}} \right)\) (học sinh)

      Từ đề bài, suy ra \(x = \)ƯCLN\(\left( {96,120,72} \right)\)

      Thực hiện phân tích các số \(96;\,120;72\) ra thừa số nguyên tố, từ đó tìm được ƯCLN\(\left( {96,\,120,72} \right)\)

      Kết luận số học sinh ở mỗi hàng nhiều nhất.

      Cách giải:

      Gọi số học sinh mỗi hàng là \(x\,\,\left( {x \in {\mathbb{N}^*}} \right)\) (học sinh)

      Theo đề bài, ta có: \(96\,\, \vdots \,\,x\,\,;\,\,\,120\,\, \vdots \,\,x\) và \(72\,\, \vdots \,\,x\,\,\,\,\left( 1 \right)\)

      Để số hàng là ít nhất \( \Rightarrow \) Số học sinh mỗi hàng là nhiều nhất

      \( \Rightarrow x\) lớn nhất (2)

      Từ \(\left( 1 \right),\left( 2 \right) \Rightarrow x = \)ƯCLN\(\left( {96,120,72} \right)\)

      Ta có: \(\left\{ \begin{array}{l}96 = {2^5}.3\\120 = {2^3}.3.5\\72 = {2^3}{.3^2}\end{array} \right.\,\, \Rightarrow \)ƯCLN\(\left( {96,120,72} \right) = {2^3}.3 = 24 \Rightarrow x = 24\)

      \( \Rightarrow \) Số học sinh ở mỗi hàng nhiều nhất là \(24\).

      Vậy số hàng ít nhất là: \(\left( {96 + 120 + 72} \right):24 = 12\) (hàng).

      Bài 4

      Phương pháp:

      Sử dụng công thức tính diện tích hình thoi có độ dài hai đường chéo là \(m,n\) thì \(S = \dfrac{1}{2}m.n\)

      Cách giải:

      Diện tích của hình thoi là: \(\dfrac{1}{2}.6.4 = 12\left( {{m^2}} \right)\)

      Số cây hoa để trồng trên mảnh đất hình thoi là: \(12.3 = 36\) (cây)

      Bài 5

      Phương pháp:

      Sử dụng công thức nhân hai lũy thừa cùng cơ số.

      Trừ các số hạng tương ứng từ hai vế của các đẳng thức.

      Cách giải:

      Ta có \(B = 3 + {3^2} + {3^3} + .... + {3^{2014}} + {3^{2015}}\) (1)

      Nhân \(3\) vào hai vế của \(B\) ta được:

      \(3B = 3\left( {3 + {3^2} + {3^3} + .... + {3^{2014}} + {3^{2015}}} \right) = 3.3 + {3.3^2} + {3.3^3} + ... + {3.3^{2014}} + {3.3^{2015}} = {3^2} + {3^3} + ... + {3^{2015}} + {3^{2016}}\) (2)

      Lấy hai vế của (2) trừ hai vế tương ứng của (1) ta được:

      \(\begin{array}{l}3B - B = \left( {{3^2} - {3^2}} \right) + \left( {{3^3} - {3^3}} \right) + .... + \left( {{3^{2014}} - {3^{2014}}} \right) + \left( {{3^{2015}} - {3^{2015}}} \right) + {3^{2016}} - 3\\2B = 0 + 0 + .... + {3^{2016}} - 3\\2B = {3^{2016}} - 3\end{array}\)

      Suy ra \(2B + 3 = {3^{2016}}\)

      Vậy \(2B + 3\) là một lũy thừa của \(3\). 

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải
      • Tải về

      Phần I: Trắc nghiệm (4 điểm).

      Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

      Câu 1. Phần tử nào không thuộc tập hợp \(A = \left\{ {\left. {x \in \mathbb{N}} \right|10 \le x < 20} \right\}\)

      A. \(20\)

      B. \(10\)

      C. \(19\)

      D. \(15\) 

      Câu 2. Bội chung nhỏ nhất của \(12;15;18\) là:

      A. \(360\)

      B. \(180\)

      C. \(450\)

      D. \(90\)

      Câu 3. Lũy thừa với số mũ là \(5\) cơ số là \(12\) được viết là:

      A. \({12^5}\)

      B. \({5^{12}}\)

      C. \({51^2}\)

      D. \({21^5}\)

      Câu 4. Số nào chia hết cho \(5\) nhưng không chia hết cho \(9\)?

      A. \(180\)

      B. \(225\)

      C. \(405\)

      D. \(305\)

      Câu 5. Chiếc diều của bạn Minh bay cao \(15m\) (so với mặt đất). Sau một lúc, độ cao của chiếc diều tăng \(2m\), rồi sau đó lại giảm \(3m\). Hỏi chiếc diều ở độ cao bao nhiêu (so với mặt đất) sau hai lần thay đổi?

      A. \(13m\)

      B. \(14m\)

      C.\(16m\)

      D. \(21m\)

      Câu 6. Tập hợp chỉ gồm các số nguyên tố?

      A. \(\left\{ {1\,;\,2\,;\,5\,;\,7} \right\}\)

      B. \(\left\{ {3\,;\,10\,;\,7\,;\,13} \right\}\)

      C. \(\left\{ {3\,;\,5\,;\,7\,;\,11} \right\}\)

      D. \(\left\{ {13\,;\,15\,;\,17\,;\,19} \right\}\)

      Câu 7. Trong các số nguyên sau: \(\left( { - 2022} \right)\,;\,\left( { - 2000} \right)\,;\,\left( { - 2021} \right)\,;\,\left( { - 1999} \right)\). Số lớn nhất là:

      A. \( - 1999\)

      B. \( - 2022\)

      C. \( - 2000\)

      D. \( - 2021\)

      Câu 8. Trong các hình dưới đây, hình nào có tâm đối xứng?

      Đề thi học kì 1 Toán 6 - Đề số 3 1

      A. Tam giác đều

      B. Cánh quạt

      C. Trái tim

      D. Cánh diều

      Câu 9. Một khu vườn thoi có độ dài hai đường chéo lần lượt là \(8m\) và \(6m\). Khi đó, diện tích khu vườn là:

      A. \(24{m^2}\)

      B. \(12{m^2}\)

      C. \(48{m^2}\)

      D. \(36{m^2}\)

      Câu 10. Một thửa ruộng hình bình hành có cạnh \(30m\) chiều cao tương ứng \(12m.\) Người ta trồng lúa trên mảnh ruộng, năng suất lúa là \(0,8\,kg/{m^2}.\) Tính sản lượng lúa thu hoạch được của thửa ruộng đó.

      A. \(228\,kg\)

      B. \(288\,kg\)

      C. \(360\,kg\)

      D. \(144\,kg\)

      Phần II. Tự luận (6 điểm):

      Bài 1. (1,0 điểm) Thực hiện phép tính:

      a) \(35 - \left\{ {12 - \left[ {\left( { - 14} \right) + \left( { - 2} \right)} \right]} \right\}\)

      b) \(1997 - \left[ {10.\left( {{4^3} - 56} \right):{2^3} + {2^3}} \right]{.2023^0}\)

      Bài 2. (1,0 điểm) Tìm \(x\), biết:

      a) \(124 + \left( {118 - x} \right) = 217\)

      b) \({3^{x + 2}} + {3^x} = 10\)

      Bài 3. (1,5 điểm) Trong cuộc thi HSG cấp tỉnh có ba môn Toán, Văn, Anh; số học sinh tham gia như sau: Văn có 96 học sinh, Toán có 120 học sinh và Anh có 72 học sinh. Trong buổi tổng kết các bạn được tham gia phân công đứng thành hàng dọc sao cho mỗi hàng có số bạn thi mỗi môn bằng nhau. Hỏi có thể phân học sinh đứng thành ít nhất bao nhiêu hàng?

      Bài 4. (2 điểm) Trong mảnh vườn hình chữ nhật có chiều dài \(6m\), chiều dài \(8m\), người ta trồng hoa hồng trong mảnh đất hình thoi như hình bên (mỗi đỉnh của hình thoi nằm chính giữa các cạnh của hình chữ nhật). Nếu mỗi mét vuông trồng được \(3\) cây hoa thì cần bao nhiêu cây để trồng mảnh đất hình thoi đó?

      Đề thi học kì 1 Toán 6 - Đề số 3 2

      Bài 5. (0,5 điểm) Cho \(B = 3 + {3^2} + {3^3} + ... + {3^{2014}} + {3^{2015}}\). Chứng minh rằng \(2B + 3\) là một lũy thừa của \(3\).

      Phần I: Trắc nghiệm

      1. A

      2. B

      3. A

      4. D

      5. B

      6. C

      7. A

      8. B

      9. A

      10. B

      Câu 1

      Phương pháp:

      Liệt kê các phần tử của một tập hợp, sau đó kiểm tra xem phần tử có thuộc tập hợp hay không.

      Cách giải:

      Ta có: \(A = \left\{ {10;11;12;13;14;15;16;17;18;19} \right\}\).

      Khi đó, nhận thấy \(20 \notin A\)

      Chọn A.

      Câu 2

      Phương pháp:

      Tìm bội chung nhỏ nhất của ba số tự nhiên bằng cách phân tích các số thành tích các số nguyên tố.

      Cách giải:

      Ta có: \(12 = {2^2}.3;15 = 3.5;18 = {2.3^2} \Rightarrow \)BCNN\(\left( {12,15,18} \right) = {2^2}{.3^2}.5 = 4.9.5 = 180\).

      Chọn B.

      Câu 3

      Phương pháp:

      Sử dụng định nghĩa lũy thừa với số mũ tự nhiên.

      Cách giải:

      Lũy thừa với số mũ là \(5\) cơ số là \(12\) được viết là: \({12^5}\)

      Chọn A.

      Câu 4

      Phương pháp:

      Sử dụng dấu hiệu chia hết cho \(5\) và \(9\).

      Cách giải:

      Ta có:

      Số \(180\) có chữ số tận cùng là \(0\) nên chia hết cho \(5\) và \(1 + 8 + 0 = 9 \vdots 9 \Rightarrow 180 \vdots 9\).

      Số \(225\) có chữ số tận cùng là \(5\) nên chia hết cho \(5\) và \(2 + 2 + 5 = 9 \vdots 9 \Rightarrow 225 \vdots 9\).

      Số \(405\) có chữ số tận cùng là \(5\) nên chia hết cho \(5\) và \(4 + 0 + 5 = 9 \vdots 9 \Rightarrow 405 \vdots 9\).

      Số \(305\) có chữ số tận cùng là \(5\) nên chia hết cho \(5\). Nhưng \(3 + 0 + 5 = 8\not{ \vdots }9 \Rightarrow 305\not{ \vdots }9\).

      Chọn D.

      Câu 5

      Phương pháp:

      Căn cứ vào yêu cầu đề bài, phân tích và đưa bài toán về thực hiện phép cộng với các số nguyên cho trước.

      Cách giải:

      Sau hai lần thay đổi, chiếc diều ở độ cao:

      \(15 + 2 + \left( { - 3} \right) = 14\left( m \right)\)

      Chọn B.

      Câu 6

      Phương pháp:

      Vận dụng định nghĩa số nguyên tố .

      Chú ý: số \(0\) và số \(1\) không là số nguyên tố; số \(2\) là số nguyên tố chẵn duy nhất.

      Cách giải:

      Ta có:

      + \(0\) không là số nguyên tố nên loại đáp án A

      + \(10\) là hợp số nên loại đáp án B

      + tất cả các phần tử đều là số nguyên tố nên chọn đáp án C

      + \(15\) là hợp số nên loại đáp án D.

      Chọn C.

      Câu 7

      Phương pháp:

      Vận dụng các bước làm so sánh hai số nguyên âm, ta làm như sau:

      + Bước 1: Bỏ dấu “\( - \)” trước hai số nguyên âm

      + Bước 2: Trong hai số nguyên dương nhận được, số nào nhỏ hơn thì số nguyên âm ban đầu (trước khi bỏ dấu “\( - \)”) sẽ lớn hơn.

      Cách giải:

      Vì nên \( - 1999 > - 2000 > - 2021 > - 2022\)

      Vậy \( - 1999\) là số nguyên âm lớn nhất\(1999 < 2000 < 2021 < 2022\)

      Chọn A.

      Câu 8

      Phương pháp:

      Sử dụng định nghĩa tâm đối xứng

      Cách giải:

      Đề thi học kì 1 Toán 6 - Đề số 3 3

      Nhận thấy chỉ có hình cánh quạt có tâm đối xứng.

      Chọn B.

      Câu 9

      Phương pháp:

      Sử dụng công thức tính diện tích hình thoi có độ dài hai đường chéo là \(m,n\) thì \(S = \dfrac{1}{2}m.n\)

      Cách giải:

      Diện tích của khu vườn là: \(\dfrac{1}{2}.8.6 = 24\left( {{m^2}} \right)\)

      Chọn A.

      Câu 10

      Phương pháp:

      Vận dụng công thức tính diện tích hình bình hành có hai cạnh là \(a,b\), có chiều cao tương ứng của cạnh \(a\) là \(h\) khi đó \(S = a.h\)

      Sản lượng lúa thu được = diện tích của thửa ruộng \( \times \) năng suất của \(1\,{m^2}\)

      Cách giải:

      Diện tích của thửa ruộng là: \(12.30 = 360\left( {{m^2}} \right)\)

      Sản lượng lúa thu hoạch được của thửa ruộng là: \(360.0,8 = 288\left( {kg} \right)\)

      Chọn B.

      Phần II: Tự luận

      Bài 1

      Phương pháp:

      Biểu thức có ngoặc thực hiện theo thứ tự \(\left( {\,\,\,} \right) \to \left[ {\,\,\,} \right] \to \left\{ {\,\,\,} \right\}\)

      Vận dụng quy tắc bỏ ngoặc có dấu “\( - \)” ở trước.

      Thực hiện các phép toán với số nguyên.

      Vận dụng kiến thức lũy thừa của một số tự nhiên.

      Cách giải:

      a) \(35 - \left\{ {12 - \left[ {\left( { - 14} \right) + \left( { - 2} \right)} \right]} \right\}\)

      \(\begin{array}{l} = 35 - \left[ {12 - \left( { - 16} \right)} \right]\\ = 35 - \left( {12 + 16} \right)\\ = 35 - 28\\ = 7\end{array}\)

      b) \(1997 - \left[ {10.\left( {{4^3} - 56} \right):{2^3} + {2^3}} \right]{.2023^0}\)

      \(\begin{array}{l} = 1997 - \left[ {10.\left( {64 - 56} \right):8 + 8} \right].1\\ = 1997 - \left( {10.8:8 + 8} \right)\\ = 1997 - \left( {80:8 + 8} \right)\\ = 1997 - \left( {10 + 8} \right)\\ = 1997 - 18\\ = 1979\end{array}\)

      Bài 2

      Phương pháp:

      a) Thực hiện các phép toán với số tự nhiên.

      b) Vận dụng kiến thức lũy thừa với số mũ tự nhiên

      Hai lũy thừa cùng cơ số bằng nhau khi số mũ của chúng bằng nhau.

      Cách giải:

      a) \(124 + \left( {118 - x} \right) = 217\)

      \(\begin{array}{l}118 - x = 217 - 124\\118 - x = 93\\x = 118 - 93\\x = 25\end{array}\)

      Vậy \(x = 25\)

      b) \({3^{x + 2}} + {3^x} = 10\)

      \(\begin{array}{l}{3^x}{.3^2} + {3^x} = 10\\{3^x}.\left( {{3^2} + 1} \right) = 10\\{3^x}.10 = 10\\{3^x} = 1\\{3^x} = {3^0}\\x = 0\end{array}\)

      Vậy \(x = 0\)

      Bài 3

      Phương pháp:

      Gọi số học sinh mỗi hàng là \(x\,\,\left( {x \in {\mathbb{N}^*}} \right)\) (học sinh)

      Từ đề bài, suy ra \(x = \)ƯCLN\(\left( {96,120,72} \right)\)

      Thực hiện phân tích các số \(96;\,120;72\) ra thừa số nguyên tố, từ đó tìm được ƯCLN\(\left( {96,\,120,72} \right)\)

      Kết luận số học sinh ở mỗi hàng nhiều nhất.

      Cách giải:

      Gọi số học sinh mỗi hàng là \(x\,\,\left( {x \in {\mathbb{N}^*}} \right)\) (học sinh)

      Theo đề bài, ta có: \(96\,\, \vdots \,\,x\,\,;\,\,\,120\,\, \vdots \,\,x\) và \(72\,\, \vdots \,\,x\,\,\,\,\left( 1 \right)\)

      Để số hàng là ít nhất \( \Rightarrow \) Số học sinh mỗi hàng là nhiều nhất

      \( \Rightarrow x\) lớn nhất (2)

      Từ \(\left( 1 \right),\left( 2 \right) \Rightarrow x = \)ƯCLN\(\left( {96,120,72} \right)\)

      Ta có: \(\left\{ \begin{array}{l}96 = {2^5}.3\\120 = {2^3}.3.5\\72 = {2^3}{.3^2}\end{array} \right.\,\, \Rightarrow \)ƯCLN\(\left( {96,120,72} \right) = {2^3}.3 = 24 \Rightarrow x = 24\)

      \( \Rightarrow \) Số học sinh ở mỗi hàng nhiều nhất là \(24\).

      Vậy số hàng ít nhất là: \(\left( {96 + 120 + 72} \right):24 = 12\) (hàng).

      Bài 4

      Phương pháp:

      Sử dụng công thức tính diện tích hình thoi có độ dài hai đường chéo là \(m,n\) thì \(S = \dfrac{1}{2}m.n\)

      Cách giải:

      Diện tích của hình thoi là: \(\dfrac{1}{2}.6.4 = 12\left( {{m^2}} \right)\)

      Số cây hoa để trồng trên mảnh đất hình thoi là: \(12.3 = 36\) (cây)

      Bài 5

      Phương pháp:

      Sử dụng công thức nhân hai lũy thừa cùng cơ số.

      Trừ các số hạng tương ứng từ hai vế của các đẳng thức.

      Cách giải:

      Ta có \(B = 3 + {3^2} + {3^3} + .... + {3^{2014}} + {3^{2015}}\) (1)

      Nhân \(3\) vào hai vế của \(B\) ta được:

      \(3B = 3\left( {3 + {3^2} + {3^3} + .... + {3^{2014}} + {3^{2015}}} \right) = 3.3 + {3.3^2} + {3.3^3} + ... + {3.3^{2014}} + {3.3^{2015}} = {3^2} + {3^3} + ... + {3^{2015}} + {3^{2016}}\) (2)

      Lấy hai vế của (2) trừ hai vế tương ứng của (1) ta được:

      \(\begin{array}{l}3B - B = \left( {{3^2} - {3^2}} \right) + \left( {{3^3} - {3^3}} \right) + .... + \left( {{3^{2014}} - {3^{2014}}} \right) + \left( {{3^{2015}} - {3^{2015}}} \right) + {3^{2016}} - 3\\2B = 0 + 0 + .... + {3^{2016}} - 3\\2B = {3^{2016}} - 3\end{array}\)

      Suy ra \(2B + 3 = {3^{2016}}\)

      Vậy \(2B + 3\) là một lũy thừa của \(3\). 

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Đề thi học kì 1 Toán 6 - Đề số 3 – nội dung then chốt trong chuyên mục toán lớp 6 trên nền tảng toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Đề thi học kì 1 Toán 6 - Đề số 3: Tổng quan và Hướng dẫn Giải Chi Tiết

      Đề thi học kì 1 Toán 6 - Đề số 3 là một công cụ hữu ích cho học sinh trong quá trình ôn tập và chuẩn bị cho kỳ thi quan trọng. Đề thi bao gồm nhiều dạng bài tập khác nhau, từ các bài tập cơ bản đến các bài tập nâng cao, giúp học sinh rèn luyện kỹ năng giải toán một cách toàn diện.

      Cấu trúc đề thi

      Đề thi thường bao gồm các phần sau:

      • Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng nhận biết các khái niệm toán học.
      • Phần tự luận: Yêu cầu học sinh trình bày lời giải chi tiết cho các bài toán.

      Nội dung đề thi

      Các chủ đề thường xuất hiện trong đề thi học kì 1 Toán 6 - Đề số 3 bao gồm:

      • Số tự nhiên: Các phép toán cộng, trừ, nhân, chia, tính chất chia hết, ước và bội.
      • Phân số: Các phép toán cộng, trừ, nhân, chia phân số, so sánh phân số, rút gọn phân số.
      • Số thập phân: Các phép toán cộng, trừ, nhân, chia số thập phân, so sánh số thập phân.
      • Tỉ số và phần trăm: Tính tỉ số, tính phần trăm, ứng dụng tỉ số và phần trăm vào giải toán.
      • Hình học: Các khái niệm cơ bản về điểm, đường thẳng, đoạn thẳng, góc, tam giác, hình vuông, hình chữ nhật.

      Hướng dẫn giải đề thi

      Để giải đề thi học kì 1 Toán 6 - Đề số 3 một cách hiệu quả, học sinh cần:

      1. Đọc kỹ đề bài: Hiểu rõ yêu cầu của bài toán trước khi bắt đầu giải.
      2. Lập kế hoạch giải: Xác định các bước cần thực hiện để giải bài toán.
      3. Thực hiện các phép tính chính xác: Sử dụng các công thức và quy tắc toán học một cách chính xác.
      4. Kiểm tra lại kết quả: Đảm bảo rằng kết quả của bài toán là hợp lý và chính xác.

      Ví dụ minh họa

      Bài 1: Tính giá trị của biểu thức sau: (12 + 18) : 6

      Giải:

      (12 + 18) : 6 = 30 : 6 = 5

      Lợi ích của việc luyện tập với đề thi

      Luyện tập với đề thi học kì 1 Toán 6 - Đề số 3 mang lại nhiều lợi ích cho học sinh:

      • Nâng cao kiến thức: Giúp học sinh củng cố và mở rộng kiến thức Toán 6.
      • Rèn luyện kỹ năng: Giúp học sinh rèn luyện kỹ năng giải toán và tư duy logic.
      • Tăng cường sự tự tin: Giúp học sinh tự tin hơn khi bước vào kỳ thi chính thức.
      • Đánh giá năng lực: Giúp học sinh tự đánh giá năng lực của bản thân và xác định những điểm cần cải thiện.

      Lời khuyên khi làm bài thi

      Để đạt kết quả tốt nhất trong kỳ thi học kì 1 Toán 6, học sinh nên:

      • Học bài đầy đủ: Nắm vững kiến thức Toán 6.
      • Làm bài tập thường xuyên: Rèn luyện kỹ năng giải toán.
      • Ôn tập kỹ lưỡng: Xem lại các kiến thức và bài tập đã học.
      • Giữ tâm lý bình tĩnh: Không nên quá lo lắng khi làm bài thi.
      • Sử dụng thời gian hợp lý: Phân bổ thời gian cho từng phần của đề thi.

      Tài liệu tham khảo

      Ngoài đề thi học kì 1 Toán 6 - Đề số 3, học sinh có thể tham khảo thêm các tài liệu sau:

      • Sách giáo khoa Toán 6
      • Sách bài tập Toán 6
      • Các trang web học toán online

      Kết luận

      Đề thi học kì 1 Toán 6 - Đề số 3 là một công cụ hỗ trợ đắc lực cho học sinh trong quá trình ôn tập và chuẩn bị cho kỳ thi. Chúc các em học sinh đạt kết quả tốt nhất!

      Tài liệu, đề thi và đáp án Toán 6