Logo Header
  1. Môn Toán
  2. Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều

Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều

Toán lớp 5 Bài 4: Ôn tập và bổ sung về phân số - SGK Cánh Diều

Bài học Toán lớp 5 Bài 4: Ôn tập và bổ sung về phân số - SGK Cánh Diều là một phần quan trọng trong chương trình học Toán 5, giúp học sinh củng cố kiến thức về phân số đã học và mở rộng thêm các kiến thức mới.

Tại giaitoan.edu.vn, chúng tôi cung cấp đầy đủ các bài giải chi tiết, dễ hiểu, cùng với các video hướng dẫn và bài tập luyện tập để giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập về phân số.

a) Viết phân số chỉ số phần đã tô màu trong mỗi hình rồi đọc (theo mẫu) ... Quy đồng mẫu số hai phân số 3/14 và 4/7

Câu 3

    Video hướng dẫn giải

    Trả lời câu hỏi 3 trang 13 SGK Toán 5 Cánh diều

    a) Nêu hai phân số bằng mỗi phân số sau: $\frac{5}{4};\,\frac{9}{{12}}$.

    b) Rút gọn các phân số sau: $\frac{{24}}{{32}};\,\,\frac{{14}}{{35}};\,\,\frac{{30}}{{25}};\,\,\frac{{63}}{{36}}$

    Phương pháp giải:

    a) Nếu nhân cả tử số và mẫu số của một phân số với cùng một số tự nhiên khác 0 thì được một phân số bằng phân số đã cho.

     Nếu chia hết cả tử số và mẫu số của một phân số cho cùng một số tự nhiên khác 0 thì được một phân số bằng phân số đã cho.

    b) Rút gọn phân số:

    • Xét xem tử số và mẫu số cùng chia hết cho số tự nhiên nào lớn hơn 1.

    • Chia tử số và mẫu số cho số đó.

    Cứ làm như thế cho đến khi nhận được phân số tối giản. 

    Lời giải chi tiết:

    a) \(\frac{5}{4} = \frac{{5 \times 3}}{{4 \times 3}} = \frac{{15}}{{12}}\) ; \(\frac{5}{4} = \frac{{5 \times 5}}{{4 \times 5}} = \frac{{25}}{{20}}\)

    Hai phân số bằng phân số $\frac{5}{4}$là $\frac{{15}}{{12}}$và $\frac{{25}}{{20}}$

    \(\frac{9}{{12}} = \frac{{9:3}}{{12:3}} = \frac{3}{4}\) ; \(\frac{9}{{12}} = \frac{{9 \times 2}}{{12 \times 2}} = \frac{{18}}{{24}}\)

    Hai phân số bằng phân số $\frac{9}{{12}}$là $\frac{3}{4}$và $\frac{{18}}{{24}}$

    b) $\frac{{24}}{{32}} = \frac{{24:8}}{{32:8}} = \frac{3}{4}$

    $\frac{{14}}{{35}} = \frac{{14:7}}{{35:7}} = \frac{2}{5}$

    $\frac{{30}}{{25}} = \frac{{30:5}}{{25:5}} = \frac{6}{5}$

    $\frac{{63}}{{36}} = \frac{{63:9}}{{36:9}} = \frac{7}{4}$

    Câu 4

      Video hướng dẫn giải

      Trả lời câu hỏi 4 trang 13 SGK Toán 5 Cánh diều

      Quy đồng mẫu số hai phân số:

      Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 3 1

      Phương pháp giải:

      - Tìm mẫu số chung- Tìm thương của mẫu số chung và mẫu số của phân số cần quy đồng

      - Nhân cả tử số và mẫu số của phân số với thương vừa tìm được

      Lời giải chi tiết:

      a) $\frac{4}{7} = \frac{{4 \times 2}}{{7 \times 2}} = \frac{8}{{14}}$; giữ nguyên phân số $\frac{3}{{14}}$.

      Vậy quy đồng mẫu số hai phân số $\frac{3}{{14}}$và $\frac{4}{7}$ta được $\frac{3}{{14}}$và $\frac{8}{{14}}$.

      b) $\frac{2}{3} = \frac{{2 \times 2}}{{3 \times 2}} = \frac{4}{6}$; giữ nguyên phân số $\frac{5}{6}$.

      Vậy quy đồng mẫu số hai phân số $\frac{2}{3}$và $\frac{5}{6}$ta được $\frac{4}{6}$và $\frac{5}{6}$.

      Câu 5

        Video hướng dẫn giải

        Trả lời câu hỏi 5 trang 13 SGK Toán 5 Cánh diều

        a) Đọc ví dụ sau rồi nói cho bạn nghe cách thực hiện:

        Ví dụ: Quy đồng mẫu số hai phân số $\frac{2}{3}$và $\frac{5}{4}$

        Vì 3 x 4 = 12 nên ta chọn 12 làm mẫu số chung.

        Ta có: $\frac{2}{3} = \frac{{2 \times 4}}{{3 \times 4}} = \frac{8}{{12}}$ và $\frac{5}{4} = \frac{{5 \times 3}}{{4 \times 3}} = \frac{{15}}{{12}}$

        Vậy quy đồng mẫu số hai phân số $\frac{2}{3}$và $\frac{5}{4}$ta được $\frac{8}{{12}}$và $\frac{{15}}{{12}}$

        b) Quy đồng mẫu số hai phân số:

        Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 4 1

        Phương pháp giải:

        - Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.

        - Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.

        Lời giải chi tiết:

        a) Cách quy đồng mẫu số:

        - Chọn mẫu số chung

        - Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.

        - Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.

        b)

        $\frac{1}{4}$và $\frac{5}{3}$

        Vì 4 x 3 = 12 nên ta chọn 12 làm mẫu số chung.

        Ta có: \(\frac{1}{4} = \frac{{1 \times 3}}{{4 \times 3}} = \frac{3}{{12}}\) và $\frac{5}{3} = \frac{{5 \times 4}}{{3 \times 4}} = \frac{{20}}{{12}}$

        Vậy quy đồng mẫu số hai phân số $\frac{1}{4}$và $\frac{5}{3}$ta được $\frac{3}{{12}}$và $\frac{{20}}{{12}}$.

        $\frac{3}{5}$và $\frac{4}{7}$

        Vì 5 x 7 = 35 nên ta chọn 35 làm mẫu số chung.

        Ta có: \(\frac{3}{5} = \frac{{3 \times 7}}{{5 \times 7}} = \frac{{21}}{{35}}\) và $\frac{4}{7} = \frac{{4 \times 5}}{{7 \times 5}} = \frac{{20}}{{35}}$

        Vậy quy đồng mẫu số hai phân số $\frac{3}{5}$và $\frac{4}{7}$ta được $\frac{{21}}{{35}}$và $\frac{{20}}{{35}}$.

        $\frac{3}{{10}}$và $\frac{7}{9}$

        Vì 10 x 9 = 90 nên ta chọn 90 làm mẫu số chung.

        Ta có: \(\frac{3}{{10}} = \frac{{3 \times 9}}{{10 \times 9}} = \frac{{27}}{{90}}\) và $\frac{7}{9} = \frac{{7 \times 10}}{{9 \times 10}} = \frac{{70}}{{90}}$

        Vậy quy đồng mẫu số hai phân số $\frac{3}{{10}}$và $\frac{7}{9}$ta được $\frac{{27}}{{90}}$và $\frac{{70}}{{90}}$

        Câu 6

          Video hướng dẫn giải

          Trả lời câu hỏi 6 trang 14 SGK Toán 5 Cánh diều

          Quy đồng mẫu số hai phân số:

          Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 5 1

          Phương pháp giải:

          - Tìm mẫu số chung

          - Tìm thương của mẫu số chung và mẫu số của phân số cần quy đồng

          - Nhân cả tử số và mẫu số của phân số với thương vừa tìm được

          Lời giải chi tiết:

          +) $\frac{3}{4}$và $\frac{1}{6}$

          Chọn 12 làm mẫu số chung.

          Ta có: $\frac{3}{4} = \frac{{3 \times 3}}{{4 \times 3}} = \frac{9}{{12}}$ và $\frac{1}{6} = \frac{{1 \times 2}}{{6 \times 2}} = \frac{2}{{12}}$

          Vậy quy đồng mẫu số hai phân số $\frac{3}{4}$và $\frac{1}{6}$ ta được $\frac{9}{{12}}$và $\frac{2}{{12}}$.

          +) $\frac{7}{{10}}$ và $\frac{5}{8}$

          Chọn 40 làm mẫu số chung.

          Ta có: $\frac{7}{{10}} = \frac{{7 \times 4}}{{10 \times 4}} = \frac{{28}}{{40}}$ và $\frac{5}{8} = \frac{{5 \times 5}}{{8 \times 5}} = \frac{{25}}{{40}}$

          Vậy quy đồng mẫu số hai phân số $\frac{7}{{10}}$và $\frac{5}{8}$ ta được $\frac{{28}}{{40}}$và $\frac{{25}}{{40}}$.

          +) $\frac{4}{9}$ và $\frac{5}{{16}}$

          Chọn 144 làm mẫu số chung.

          Ta có: \(\frac{4}{9} = \frac{{4 \times 16}}{{9 \times 16}} = \frac{{64}}{{144}}\) và $\frac{5}{{16}} = \frac{{5 \times 9}}{{16 \times 9}} = \frac{{45}}{{144}}$

          Vậy quy đồng mẫu số hai phân số $\frac{4}{9}$và $\frac{5}{{16}}$ta được $\frac{{64}}{{144}}$và $\frac{{45}}{{144}}$.

          Câu 7

            Video hướng dẫn giải

            Trả lời câu hỏi 7 trang 14 SGK Toán 5 Cánh diều

            a) 

            Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 6 1

            b) Sắp xếp các phân số $\frac{2}{3};\,\frac{6}{7};\,\frac{3}{4}$theo thứ tự từ bé đến lớn.

            Phương pháp giải:

            - Trong hai phân số có cùng mẫu số: Phân số nào có tử số lớn hơn thì lớn hơn.

             - Muốn so sánh hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số rồi so sánh hai phân số sau khi quy đồng

            Lời giải chi tiết:

            a)

            Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 6 2

            b) Chọn mẫu số chung là 84.

            Ta có $\frac{2}{3} = \frac{{2 \times 28}}{{3 \times 28}} = \frac{{56}}{{84}}$

            $\frac{6}{7} = \frac{{6 \times 12}}{{7 \times 12}} = \frac{{72}}{{84}}$

             $\frac{3}{4} = \frac{{3 \times 21}}{{4 \times 21}} = \frac{{63}}{{84}}$

            Vì $\frac{{56}}{{84}} < \frac{{63}}{{84}} < \frac{{72}}{{84}}$nên $\frac{2}{3} < \frac{3}{4} < \frac{6}{7}$.

            Vậy các phân số đã cho viết theo thứ tự từ bé đến lớn là $\frac{2}{3};\frac{3}{4};\frac{6}{7}$.

            Câu 8

              Video hướng dẫn giải

              Trả lời câu hỏi 8 trang 14 SGK Toán 5 Cánh diều

              Dung và Đức cùng tham gia trò chơi leo dây với các dây có cùng chiều dài. Dung leo được $\frac{5}{8}$sợi dây. Đức leo được $\frac{4}{{10}}$sợi dây.

              Theo em:

              a) Dung đã leo được sợi dây màu nào? Đức đã leo được sợi dây màu nào?

              b) Ai đã leo được đoạn dây dài hơn?

              Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 7 1

              Phương pháp giải:

              a) Quan sát hình vẽ và đếm số phần trên mỗi sợi dây.

              Sợi dây mỗi bạn leo có mẫu số bằng số phần vừa đếm được.

              b) So sánh số phần dây Dung leo được với số phần dây Phúc leo được rồi kết luận

              Lời giải chi tiết:

              a) Dung đã leo được sợi dây màu cam, Đức đã leo được sợi dây màu xanh dương.

              b) Chọn 40 là mẫu số chung. Ta có:

              $\frac{5}{8} = \frac{{5 \times 5}}{{8 \times 5}} = \frac{{25}}{{40}}$; $\frac{4}{{10}} = \frac{{4 \times 4}}{{10 \times 4}} = \frac{{16}}{{40}}$

              Vì $\frac{{25}}{{40}} > \frac{{16}}{{40}}$ nên $\frac{5}{8} > \frac{4}{{10}}$

              Vậy Dung leo được đoạn dây dài hơn Phúc.

              Câu 2

                Video hướng dẫn giải

                Trả lời câu hỏi 2 trang 12 SGK Toán 5 Cánh diều

                a) Viết phân số chỉ số phần đã tô màu trong mỗi hình rồi đọc (theo mẫu):

                Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 1 1

                b) Viết thương của mỗi phép chia sau dưới dạng phân số (theo mẫu):

                Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 1 2

                c) Viết các số tự nhiên sau thành phân số (theo mẫu):

                Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 1 3

                Phương pháp giải:

                a) Phân số chỉ phần đã tô màu có tử số chỉ số phần đã tô màu và mẫu số chỉ số phần bằng nhau. Khi đọc phân số ta đọc tử số trước, dấu gạch ngang đọc là “phần”, sau đó đọc mẫu số.

                b) Thương của phép chia một số tự nhiên cho một số tự nhiên (khác 0) có thể viết thành một phân số, tử số là số bị chia và mẫu số là số chia.

                c) Mọi số tự nhiên đều có thể viết thành phân số có mẫu số là 1.

                Lời giải chi tiết:

                a)

                Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 1 4

                b) 11 : 5 = $\frac{{11}}{5}$ ; $9:100 = \frac{9}{{100}}$ ; $33:30 = \frac{{33}}{{30}}$

                c) $301 = \frac{{301}}{1}$ ; $12 = \frac{{12}}{1}$ ; $2025 = \frac{{2025}}{1}$

                Câu 1

                  Video hướng dẫn giải

                  Trả lời câu hỏi 1 trang 12 SGK Toán 5 Cánh diều

                  Trò chơi “Ghép thẻ”

                  a) Ghép các thẻ ghi phân số thích hợp với thẻ hình vẽ có số phần đã tô màu tương ứng:

                  Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 0 1

                  b) Đọc các phân số ở câu a và nêu tử số, mẫu số của mỗi phân số đó.

                  Phương pháp giải:

                  a) Phân số chỉ phần đã tô màu có tử số chỉ số phần đã tô màu và mẫu số chỉ số phần bằng nhau. b)

                  - Khi đọc phân số ta đọc tử số trước, dấu gạch ngang đọc là “phần”, sau đó đọc mẫu số. - Tử số là số tự nhiên viết trên gạch ngang. Mẫu số là số tự nhiên khác 0 viết dưới gạch ngang.

                  Lời giải chi tiết:

                  a)

                  Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 0 2

                  b) $\frac{4}{7}$ đọc là: bốn phần bảy; tử số là 4, mẫu số là 7

                  $\frac{3}{8}$ đọc là: ba phần tám; tử số là 3, mẫu số là 8

                  $\frac{3}{7}$ đọc là: ba phần bảy; có tử số là 3, mẫu số là 7

                  $\frac{3}{4}$ đọc là: ba phần tư; tử số là 3, mẫu số là 4

                  $\frac{{20}}{{100}}$ đọc là: hai mươi phần một trăm; tử số là 20, mẫu số là 100

                  $\frac{7}{{10}}$ đọc là: bảy phần mười; tử số là 7, mẫu số là 10

                  Lựa chọn câu để xem lời giải nhanh hơn
                  • Câu 1
                  • Câu 2
                  • Câu 3
                  • Câu 4
                  • Câu 5
                  • Câu 6
                  • Câu 7
                  • Câu 8

                  Video hướng dẫn giải

                  Trả lời câu hỏi 1 trang 12 SGK Toán 5 Cánh diều

                  Trò chơi “Ghép thẻ”

                  a) Ghép các thẻ ghi phân số thích hợp với thẻ hình vẽ có số phần đã tô màu tương ứng:

                  Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 1

                  b) Đọc các phân số ở câu a và nêu tử số, mẫu số của mỗi phân số đó.

                  Phương pháp giải:

                  a) Phân số chỉ phần đã tô màu có tử số chỉ số phần đã tô màu và mẫu số chỉ số phần bằng nhau. b)

                  - Khi đọc phân số ta đọc tử số trước, dấu gạch ngang đọc là “phần”, sau đó đọc mẫu số. - Tử số là số tự nhiên viết trên gạch ngang. Mẫu số là số tự nhiên khác 0 viết dưới gạch ngang.

                  Lời giải chi tiết:

                  a)

                  Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 2

                  b) $\frac{4}{7}$ đọc là: bốn phần bảy; tử số là 4, mẫu số là 7

                  $\frac{3}{8}$ đọc là: ba phần tám; tử số là 3, mẫu số là 8

                  $\frac{3}{7}$ đọc là: ba phần bảy; có tử số là 3, mẫu số là 7

                  $\frac{3}{4}$ đọc là: ba phần tư; tử số là 3, mẫu số là 4

                  $\frac{{20}}{{100}}$ đọc là: hai mươi phần một trăm; tử số là 20, mẫu số là 100

                  $\frac{7}{{10}}$ đọc là: bảy phần mười; tử số là 7, mẫu số là 10

                  Video hướng dẫn giải

                  Trả lời câu hỏi 2 trang 12 SGK Toán 5 Cánh diều

                  a) Viết phân số chỉ số phần đã tô màu trong mỗi hình rồi đọc (theo mẫu):

                  Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 3

                  b) Viết thương của mỗi phép chia sau dưới dạng phân số (theo mẫu):

                  Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 4

                  c) Viết các số tự nhiên sau thành phân số (theo mẫu):

                  Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 5

                  Phương pháp giải:

                  a) Phân số chỉ phần đã tô màu có tử số chỉ số phần đã tô màu và mẫu số chỉ số phần bằng nhau. Khi đọc phân số ta đọc tử số trước, dấu gạch ngang đọc là “phần”, sau đó đọc mẫu số.

                  b) Thương của phép chia một số tự nhiên cho một số tự nhiên (khác 0) có thể viết thành một phân số, tử số là số bị chia và mẫu số là số chia.

                  c) Mọi số tự nhiên đều có thể viết thành phân số có mẫu số là 1.

                  Lời giải chi tiết:

                  a)

                  Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 6

                  b) 11 : 5 = $\frac{{11}}{5}$ ; $9:100 = \frac{9}{{100}}$ ; $33:30 = \frac{{33}}{{30}}$

                  c) $301 = \frac{{301}}{1}$ ; $12 = \frac{{12}}{1}$ ; $2025 = \frac{{2025}}{1}$

                  Video hướng dẫn giải

                  Trả lời câu hỏi 3 trang 13 SGK Toán 5 Cánh diều

                  a) Nêu hai phân số bằng mỗi phân số sau: $\frac{5}{4};\,\frac{9}{{12}}$.

                  b) Rút gọn các phân số sau: $\frac{{24}}{{32}};\,\,\frac{{14}}{{35}};\,\,\frac{{30}}{{25}};\,\,\frac{{63}}{{36}}$

                  Phương pháp giải:

                  a) Nếu nhân cả tử số và mẫu số của một phân số với cùng một số tự nhiên khác 0 thì được một phân số bằng phân số đã cho.

                   Nếu chia hết cả tử số và mẫu số của một phân số cho cùng một số tự nhiên khác 0 thì được một phân số bằng phân số đã cho.

                  b) Rút gọn phân số:

                  • Xét xem tử số và mẫu số cùng chia hết cho số tự nhiên nào lớn hơn 1.

                  • Chia tử số và mẫu số cho số đó.

                  Cứ làm như thế cho đến khi nhận được phân số tối giản. 

                  Lời giải chi tiết:

                  a) \(\frac{5}{4} = \frac{{5 \times 3}}{{4 \times 3}} = \frac{{15}}{{12}}\) ; \(\frac{5}{4} = \frac{{5 \times 5}}{{4 \times 5}} = \frac{{25}}{{20}}\)

                  Hai phân số bằng phân số $\frac{5}{4}$là $\frac{{15}}{{12}}$và $\frac{{25}}{{20}}$

                  \(\frac{9}{{12}} = \frac{{9:3}}{{12:3}} = \frac{3}{4}\) ; \(\frac{9}{{12}} = \frac{{9 \times 2}}{{12 \times 2}} = \frac{{18}}{{24}}\)

                  Hai phân số bằng phân số $\frac{9}{{12}}$là $\frac{3}{4}$và $\frac{{18}}{{24}}$

                  b) $\frac{{24}}{{32}} = \frac{{24:8}}{{32:8}} = \frac{3}{4}$

                  $\frac{{14}}{{35}} = \frac{{14:7}}{{35:7}} = \frac{2}{5}$

                  $\frac{{30}}{{25}} = \frac{{30:5}}{{25:5}} = \frac{6}{5}$

                  $\frac{{63}}{{36}} = \frac{{63:9}}{{36:9}} = \frac{7}{4}$

                  Video hướng dẫn giải

                  Trả lời câu hỏi 4 trang 13 SGK Toán 5 Cánh diều

                  Quy đồng mẫu số hai phân số:

                  Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 7

                  Phương pháp giải:

                  - Tìm mẫu số chung- Tìm thương của mẫu số chung và mẫu số của phân số cần quy đồng

                  - Nhân cả tử số và mẫu số của phân số với thương vừa tìm được

                  Lời giải chi tiết:

                  a) $\frac{4}{7} = \frac{{4 \times 2}}{{7 \times 2}} = \frac{8}{{14}}$; giữ nguyên phân số $\frac{3}{{14}}$.

                  Vậy quy đồng mẫu số hai phân số $\frac{3}{{14}}$và $\frac{4}{7}$ta được $\frac{3}{{14}}$và $\frac{8}{{14}}$.

                  b) $\frac{2}{3} = \frac{{2 \times 2}}{{3 \times 2}} = \frac{4}{6}$; giữ nguyên phân số $\frac{5}{6}$.

                  Vậy quy đồng mẫu số hai phân số $\frac{2}{3}$và $\frac{5}{6}$ta được $\frac{4}{6}$và $\frac{5}{6}$.

                  Video hướng dẫn giải

                  Trả lời câu hỏi 5 trang 13 SGK Toán 5 Cánh diều

                  a) Đọc ví dụ sau rồi nói cho bạn nghe cách thực hiện:

                  Ví dụ: Quy đồng mẫu số hai phân số $\frac{2}{3}$và $\frac{5}{4}$

                  Vì 3 x 4 = 12 nên ta chọn 12 làm mẫu số chung.

                  Ta có: $\frac{2}{3} = \frac{{2 \times 4}}{{3 \times 4}} = \frac{8}{{12}}$ và $\frac{5}{4} = \frac{{5 \times 3}}{{4 \times 3}} = \frac{{15}}{{12}}$

                  Vậy quy đồng mẫu số hai phân số $\frac{2}{3}$và $\frac{5}{4}$ta được $\frac{8}{{12}}$và $\frac{{15}}{{12}}$

                  b) Quy đồng mẫu số hai phân số:

                  Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 8

                  Phương pháp giải:

                  - Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.

                  - Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.

                  Lời giải chi tiết:

                  a) Cách quy đồng mẫu số:

                  - Chọn mẫu số chung

                  - Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.

                  - Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.

                  b)

                  $\frac{1}{4}$và $\frac{5}{3}$

                  Vì 4 x 3 = 12 nên ta chọn 12 làm mẫu số chung.

                  Ta có: \(\frac{1}{4} = \frac{{1 \times 3}}{{4 \times 3}} = \frac{3}{{12}}\) và $\frac{5}{3} = \frac{{5 \times 4}}{{3 \times 4}} = \frac{{20}}{{12}}$

                  Vậy quy đồng mẫu số hai phân số $\frac{1}{4}$và $\frac{5}{3}$ta được $\frac{3}{{12}}$và $\frac{{20}}{{12}}$.

                  $\frac{3}{5}$và $\frac{4}{7}$

                  Vì 5 x 7 = 35 nên ta chọn 35 làm mẫu số chung.

                  Ta có: \(\frac{3}{5} = \frac{{3 \times 7}}{{5 \times 7}} = \frac{{21}}{{35}}\) và $\frac{4}{7} = \frac{{4 \times 5}}{{7 \times 5}} = \frac{{20}}{{35}}$

                  Vậy quy đồng mẫu số hai phân số $\frac{3}{5}$và $\frac{4}{7}$ta được $\frac{{21}}{{35}}$và $\frac{{20}}{{35}}$.

                  $\frac{3}{{10}}$và $\frac{7}{9}$

                  Vì 10 x 9 = 90 nên ta chọn 90 làm mẫu số chung.

                  Ta có: \(\frac{3}{{10}} = \frac{{3 \times 9}}{{10 \times 9}} = \frac{{27}}{{90}}\) và $\frac{7}{9} = \frac{{7 \times 10}}{{9 \times 10}} = \frac{{70}}{{90}}$

                  Vậy quy đồng mẫu số hai phân số $\frac{3}{{10}}$và $\frac{7}{9}$ta được $\frac{{27}}{{90}}$và $\frac{{70}}{{90}}$

                  Video hướng dẫn giải

                  Trả lời câu hỏi 6 trang 14 SGK Toán 5 Cánh diều

                  Quy đồng mẫu số hai phân số:

                  Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 9

                  Phương pháp giải:

                  - Tìm mẫu số chung

                  - Tìm thương của mẫu số chung và mẫu số của phân số cần quy đồng

                  - Nhân cả tử số và mẫu số của phân số với thương vừa tìm được

                  Lời giải chi tiết:

                  +) $\frac{3}{4}$và $\frac{1}{6}$

                  Chọn 12 làm mẫu số chung.

                  Ta có: $\frac{3}{4} = \frac{{3 \times 3}}{{4 \times 3}} = \frac{9}{{12}}$ và $\frac{1}{6} = \frac{{1 \times 2}}{{6 \times 2}} = \frac{2}{{12}}$

                  Vậy quy đồng mẫu số hai phân số $\frac{3}{4}$và $\frac{1}{6}$ ta được $\frac{9}{{12}}$và $\frac{2}{{12}}$.

                  +) $\frac{7}{{10}}$ và $\frac{5}{8}$

                  Chọn 40 làm mẫu số chung.

                  Ta có: $\frac{7}{{10}} = \frac{{7 \times 4}}{{10 \times 4}} = \frac{{28}}{{40}}$ và $\frac{5}{8} = \frac{{5 \times 5}}{{8 \times 5}} = \frac{{25}}{{40}}$

                  Vậy quy đồng mẫu số hai phân số $\frac{7}{{10}}$và $\frac{5}{8}$ ta được $\frac{{28}}{{40}}$và $\frac{{25}}{{40}}$.

                  +) $\frac{4}{9}$ và $\frac{5}{{16}}$

                  Chọn 144 làm mẫu số chung.

                  Ta có: \(\frac{4}{9} = \frac{{4 \times 16}}{{9 \times 16}} = \frac{{64}}{{144}}\) và $\frac{5}{{16}} = \frac{{5 \times 9}}{{16 \times 9}} = \frac{{45}}{{144}}$

                  Vậy quy đồng mẫu số hai phân số $\frac{4}{9}$và $\frac{5}{{16}}$ta được $\frac{{64}}{{144}}$và $\frac{{45}}{{144}}$.

                  Video hướng dẫn giải

                  Trả lời câu hỏi 7 trang 14 SGK Toán 5 Cánh diều

                  a) 

                  Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 10

                  b) Sắp xếp các phân số $\frac{2}{3};\,\frac{6}{7};\,\frac{3}{4}$theo thứ tự từ bé đến lớn.

                  Phương pháp giải:

                  - Trong hai phân số có cùng mẫu số: Phân số nào có tử số lớn hơn thì lớn hơn.

                   - Muốn so sánh hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số rồi so sánh hai phân số sau khi quy đồng

                  Lời giải chi tiết:

                  a)

                  Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 11

                  b) Chọn mẫu số chung là 84.

                  Ta có $\frac{2}{3} = \frac{{2 \times 28}}{{3 \times 28}} = \frac{{56}}{{84}}$

                  $\frac{6}{7} = \frac{{6 \times 12}}{{7 \times 12}} = \frac{{72}}{{84}}$

                   $\frac{3}{4} = \frac{{3 \times 21}}{{4 \times 21}} = \frac{{63}}{{84}}$

                  Vì $\frac{{56}}{{84}} < \frac{{63}}{{84}} < \frac{{72}}{{84}}$nên $\frac{2}{3} < \frac{3}{4} < \frac{6}{7}$.

                  Vậy các phân số đã cho viết theo thứ tự từ bé đến lớn là $\frac{2}{3};\frac{3}{4};\frac{6}{7}$.

                  Video hướng dẫn giải

                  Trả lời câu hỏi 8 trang 14 SGK Toán 5 Cánh diều

                  Dung và Đức cùng tham gia trò chơi leo dây với các dây có cùng chiều dài. Dung leo được $\frac{5}{8}$sợi dây. Đức leo được $\frac{4}{{10}}$sợi dây.

                  Theo em:

                  a) Dung đã leo được sợi dây màu nào? Đức đã leo được sợi dây màu nào?

                  b) Ai đã leo được đoạn dây dài hơn?

                  Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều 12

                  Phương pháp giải:

                  a) Quan sát hình vẽ và đếm số phần trên mỗi sợi dây.

                  Sợi dây mỗi bạn leo có mẫu số bằng số phần vừa đếm được.

                  b) So sánh số phần dây Dung leo được với số phần dây Phúc leo được rồi kết luận

                  Lời giải chi tiết:

                  a) Dung đã leo được sợi dây màu cam, Đức đã leo được sợi dây màu xanh dương.

                  b) Chọn 40 là mẫu số chung. Ta có:

                  $\frac{5}{8} = \frac{{5 \times 5}}{{8 \times 5}} = \frac{{25}}{{40}}$; $\frac{4}{{10}} = \frac{{4 \times 4}}{{10 \times 4}} = \frac{{16}}{{40}}$

                  Vì $\frac{{25}}{{40}} > \frac{{16}}{{40}}$ nên $\frac{5}{8} > \frac{4}{{10}}$

                  Vậy Dung leo được đoạn dây dài hơn Phúc.

                  Biến Toán lớp 5 thành môn học yêu thích! Đừng bỏ lỡ Toán lớp 5 Bài 4. Ôn tập và bổ sung về phân số - SGK cánh diều đặc sắc thuộc chuyên mục giải toán lớp 5 trên nền tảng tài liệu toán. Với bộ bài tập Lý thuyết Toán tiểu học được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ tự tin ôn luyện, củng cố kiến thức một cách vững chắc qua phương pháp trực quan, sẵn sàng cho một hành trình học tập thành công vượt bậc.

                  Toán lớp 5 Bài 4: Ôn tập và bổ sung về phân số - SGK Cánh Diều

                  Bài 4 trong chương trình Toán lớp 5 sách Cánh Diều tập trung vào việc ôn tập và bổ sung kiến thức về phân số. Đây là một chủ đề quan trọng, nền tảng cho các kiến thức toán học nâng cao hơn. Bài học này giúp học sinh hệ thống lại các khái niệm cơ bản về phân số, các phép toán với phân số, và ứng dụng của phân số trong thực tế.

                  I. Kiến thức cơ bản về phân số

                  Phân số là một biểu thức toán học dùng để biểu diễn một phần của một đơn vị hoặc một tập hợp. Một phân số có hai phần: tử số (phần được lấy ra) và mẫu số (phần chung). Ví dụ, phân số 2/3 có tử số là 2 và mẫu số là 3.

                  • Phân số bằng nhau: Hai phân số được gọi là bằng nhau nếu chúng biểu diễn cùng một lượng. Ví dụ: 1/2 = 2/4 = 3/6.
                  • Quy đồng phân số: Quy đồng phân số là việc biến đổi các phân số khác nhau thành các phân số có cùng mẫu số.
                  • Rút gọn phân số: Rút gọn phân số là việc chia cả tử số và mẫu số cho ước chung lớn nhất của chúng để được phân số tối giản.

                  II. Các phép toán với phân số

                  Các phép toán cơ bản với phân số bao gồm:

                  1. Phép cộng phân số: Để cộng hai phân số có cùng mẫu số, ta cộng các tử số lại với nhau và giữ nguyên mẫu số. Nếu hai phân số có mẫu số khác nhau, ta cần quy đồng mẫu số trước khi cộng.
                  2. Phép trừ phân số: Tương tự như phép cộng, để trừ hai phân số có cùng mẫu số, ta trừ các tử số lại với nhau và giữ nguyên mẫu số. Nếu hai phân số có mẫu số khác nhau, ta cần quy đồng mẫu số trước khi trừ.
                  3. Phép nhân phân số: Để nhân hai phân số, ta nhân các tử số với nhau và nhân các mẫu số với nhau.
                  4. Phép chia phân số: Để chia hai phân số, ta nhân phân số bị chia với nghịch đảo của phân số chia.

                  III. Bài tập vận dụng

                  Dưới đây là một số bài tập vận dụng để giúp các em học sinh hiểu rõ hơn về bài học:

                  1. Tính: 1/2 + 1/3
                  2. Tính: 2/5 - 1/4
                  3. Tính: 3/4 x 2/5
                  4. Tính: 5/6 : 1/2
                  5. Rút gọn phân số: 6/8
                  6. Quy đồng mẫu số: 1/3 và 1/4

                  IV. Giải bài tập SGK Cánh Diều Toán lớp 5 Bài 4

                  Chúng tôi sẽ cung cấp lời giải chi tiết cho từng bài tập trong SGK Cánh Diều Toán lớp 5 Bài 4. Các em học sinh có thể tham khảo để hiểu rõ cách giải và tự luyện tập.

                  Bài tậpLời giải
                  Bài 1(Giải thích chi tiết bài 1)
                  Bài 2(Giải thích chi tiết bài 2)
                  Bài 3(Giải thích chi tiết bài 3)

                  V. Lời khuyên khi học về phân số

                  Để học tốt về phân số, các em học sinh cần:

                  • Nắm vững các khái niệm cơ bản về phân số.
                  • Luyện tập thường xuyên các phép toán với phân số.
                  • Hiểu rõ cách quy đồng và rút gọn phân số.
                  • Ứng dụng kiến thức về phân số vào giải các bài tập thực tế.

                  Hy vọng rằng bài viết này sẽ giúp các em học sinh hiểu rõ hơn về Toán lớp 5 Bài 4: Ôn tập và bổ sung về phân số - SGK Cánh Diều và đạt kết quả tốt trong học tập.