Dạng toán này thường xuất hiện trong các đề thi toán nâng cao lớp 5, đòi hỏi học sinh phải có tư duy logic và khả năng nhận biết quy luật của dãy phân số. Bài học này tại giaitoan.edu.vn sẽ giúp các em nắm vững phương pháp giải và áp dụng thành thạo vào các bài tập thực tế.
Chúng ta sẽ cùng nhau khám phá các kỹ năng cần thiết để giải quyết các bài toán về dãy phân số một cách nhanh chóng và chính xác.
Cho phân số 56/81 Hỏi cùng thêm vào tử số và mẫu số bao nhiêu đơn vị để được phân số bằng 3/4. Một đội tự nguyện trường Nguyễn Tất thành đi trồng cây ở tỉnh Hà Giang trong 3 ngày.
Loại 1: Dãy phân số có quy luật mẫu số sau gấp mẫu số trước một số không đổi
Phương pháp giải Giải sử biểu thức cần tìm là A. Các phân số có tử số bằng nhau và mẫu của phân số sau gấp mẫu số của phân số trước n lần. Bước 1: Tính A x n Bước 2: Tính A x n - A |
Ví dụ 1:
Tính giá trị $A = \frac{1}{2}\,\, + \,\,\frac{1}{4}\,\, + \,\,\frac{1}{8}\,\, + \,\,\frac{1}{{16}}\,\, + \,\,\frac{1}{{32}}\,\, + \,\,\frac{1}{{64}}$
Phân tích: Nhận xét thấy mẫu số phân số sau hơn mẫu số phân số trước 2 lần. Như vậy khi ta nhân thêm 2 vào thì phân số phía sau sẽ trở thành phân số phía trước.
Bài giải:
$A = \frac{1}{2}\,\, + \,\,\frac{1}{4}\,\, + \,\,\frac{1}{8}\,\, + \,\,\frac{1}{{16}}\,\, + \,\,\frac{1}{{32}}\,\, + \,\,\frac{1}{{64}}$ (1)
$2 \times A = 2 \times \left( {\frac{1}{2}\,\, + \,\,\frac{1}{4}\,\, + \,\,\frac{1}{8}\,\, + \,\,\frac{1}{{16}}\,\, + \,\,\frac{1}{{32}}\,\, + \,\,\frac{1}{{64}}} \right)$
$ = \frac{2}{2}\,\, + \,\,\frac{2}{4}\,\, + \,\,\,\frac{2}{8}\,\, + \,\,\frac{2}{{16}}\,\, + \,\,\frac{2}{{32}}\,\, + \,\,\frac{2}{{64}}$
$ = 1\,\, + \,\,\frac{1}{2}\, + \,\,\frac{1}{4}\,\, + \,\,\frac{1}{8}\,\, + \,\,\frac{1}{{16}}\,\, + \,\,\frac{1}{{32}}\,\,\,$ (2)
Nhìn vào (1) và (2), chúng ta nhận thấy ở A và 2 x A có nhiều phân số giống nhau. Nếu ta trừ hai vế cho nhau thì được:
$2 \times A - A$= $\left( {1\,\, + \,\,\frac{1}{2}\, + \,\,\frac{1}{4}\,\, + \,\,\frac{1}{8}\,\, + \,\,\frac{1}{{16}}\,\, + \,\,\frac{1}{{32}}\,\,\,} \right)\,\, - \,\,$$\left( {\frac{1}{2}\,\, + \,\,\frac{1}{4}\,\, + \,\,\frac{1}{8}\,\, + \,\,\frac{1}{{16}}\,\, + \,\,\frac{1}{{32}}\,\, + \,\,\frac{1}{{64}}} \right)$
$A = $ 1 – $\frac{1}{{64}}$= $\frac{{63}}{{64}}$
Ví dụ 2:
Tính $A = \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}} + \frac{1}{{729}}$
Phân tích: Ở bài này, mẫu số sau gấp mẫu số trước 3 lần khi đó ta nhân biểu thức với 3 rồi trừ hai vế để triệt tiêu các phân số ở giữa.
Giải:
Ta có $A = \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}} + \frac{1}{{729}}$
$3 \times A = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}}$
Trừ hai vế ta có:
$3 \times A - A = (1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}}) - (\frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}} + \frac{1}{{729}})$
$2 \times A = 1 - \frac{1}{{729}} = \frac{{728}}{{729}}$
$A = \frac{{728}}{{729}}:2 = \frac{{364}}{{729}}$
Ví dụ 3:
Tính giá trị $A = \frac{2}{3} + \frac{2}{6} + \frac{2}{{12}} + \frac{2}{{24}} + ..... + \frac{2}{{768}}$
Ta thấy mẫu số của phân số sau gấp 2 lần mẫu số của phân số trước.
Ta có $2 \times A = 2 \times (\frac{2}{3} + \frac{2}{6} + \frac{2}{{12}} + \frac{2}{{24}} + .... + \frac{2}{{768}})$
$2 \times A = \frac{4}{3} + \frac{2}{3} + \frac{2}{6} + \frac{2}{{12}} + .... + \frac{2}{{384}}$
$2 \times A - A = \left( {\frac{4}{3} + \frac{2}{3} + \frac{2}{6} + \frac{2}{{12}} + .... + \frac{2}{{384}}} \right) - \left( {\frac{2}{3} + \frac{2}{6} + \frac{2}{{12}} + \frac{2}{{24}} + .... + \frac{2}{{768}}} \right)$
$A = \frac{4}{3} - \frac{2}{{768}} = \frac{{511}}{{384}}$
Loại 2: Tính tổng của nhiều phân số có tử số là n (n > 0); mẫu số là tích của 2 thừa số có hiệu bằng n và thừa số thứ 2 của mẫu số phân số liền trước là thừa số thứ nhất của mẫu số phân số liền sau
Phương pháp giải Tử số bằng hiệu hai thừa số ở mẫu số. Ta tách như sau: Ví dụ: $\frac{1}{{2 \times 3}} = \frac{{3 - 2}}{{2 \times 3}} = \frac{3}{{2 \times 3}} - \frac{2}{{2 \times 3}} = \frac{1}{2} - \frac{1}{3}$ $\frac{2}{{3 \times 5}} = \frac{{5 - 3}}{{3 \times 5}} = \frac{5}{{3 \times 5}} - \frac{3}{{3 \times 5}} = \frac{1}{3} - \frac{1}{5}$ |
Ví dụ 1:
$A = \frac{1}{{2\,\, \times \,\,3}}\,\, + \,\,\frac{1}{{3\, \times \,4}}\,\, + \,\,\frac{1}{{4\, \times \,5}}\,\, + \,\frac{1}{{5\, \times \,6}}$
$A = \frac{{3\, - \,2}}{{2\,\, \times \,\,3}}\,\, + \,\,\frac{{4\, - \,3}}{{3\, \times \,4}}\,\, + \,\,\frac{{5\, - \,4}}{{4\, \times \,5}}\,\, + \,\frac{{6\, - \,5}}{{5\, \times \,6}}$
= $\frac{3}{{2\,\, \times \,\,3}}\,\, - \,\,\frac{2}{{2\, \times \,3}}\,\, + \,\,\frac{4}{{3\, \times \,4}}\,\, - \frac{3}{{3\, \times \,4}} + \,\,\frac{5}{{4\, \times \,5}}\,\, - \,\,\frac{4}{{4\, \times \,5}} + \,\frac{6}{{5\, \times \,6}}\,\, - \,\,\frac{5}{{5\, \times \,6}}$
= $\frac{1}{2}\,\, - \,\frac{1}{3}\,\, + \,\,\frac{1}{3}\,\, - \,\,\frac{1}{4}\,\, + \,\,\frac{1}{4}\,\, - \,\,\frac{1}{5}\,\, + \,\,\frac{1}{5}\,\, - \,\frac{1}{6}$
= \(\frac{1}{2} - \frac{1}{3} = \frac{1}{6}\)
Ví dụ 2:
$B = \frac{3}{{2 \times 5}} + \frac{3}{{5 \times 8}} + \frac{3}{{8 \times 11}} + \frac{3}{{11 \times 14}}$
$B = \frac{{5 - 2}}{{2 \times 5}} + \frac{{8 - 5}}{{5 \times 8}} + \frac{{11 - 8}}{{8 \times 11}} + \frac{{14 - 11}}{{11 \times 14}}$
$ = \frac{5}{{2 \times 5}} - \frac{2}{{2 \times 5}} + \frac{8}{{5 \times 8}} - \frac{5}{{5 \times 8}} + \frac{{11}}{{8 \times 11}} - \frac{8}{{8 \times 11}} + \frac{{14}}{{11 \times 14}} - \frac{{11}}{{11 \times 14}}$
$ = \frac{1}{2} - \frac{1}{5} + \frac{1}{5} - \frac{1}{8} + \frac{1}{8} - \frac{1}{{11}} + \frac{1}{{11}} - \frac{1}{{14}}$
$ = \frac{1}{2} - \frac{1}{{14}} = \frac{3}{7}$
Bài tập áp dụng
Tính giá trị$A = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{{16}} + \frac{1}{{32}} + .... + \frac{1}{{1024}}$
Tính giá trị\(A = \frac{1}{5} + \frac{1}{{10}} + \frac{1}{{20}} + \frac{1}{{40}} + \frac{1}{{80}} + \frac{1}{{160}} + \frac{1}{{320}}\)
Tính giá trị của$C = \frac{3}{2}\,\, + \,\,\frac{3}{8}\,\, + \,\,\frac{3}{{32}}\,\, + \,\,\frac{3}{{128}}\,\, + \,\,\frac{3}{{512}}$
Tính giá trị của $D = \frac{5}{2}\,\, + \frac{5}{6}\,\, + \,\,\frac{5}{{18}}\,\, + \,\,\frac{5}{{54}}\,\, + \,\,\frac{5}{{162}}\,\, + \,\,\frac{5}{{486}}$
Tính nhanh$B = \frac{4}{{3\, \times \,7}}\,\, + \,\,\frac{4}{{7\, \times \,11}}\,\, + \,\,\frac{4}{{11\, \times \,15}}\,\, + \,\frac{4}{{15\, \times \,19}}\,\, + \,\,\frac{4}{{19\, \times \,23}}\,\, + \,\frac{4}{{23\, \times \,27}}$
Tính nhanh$C = \frac{4}{{3\, \times \,6}}\,\, + \,\,\frac{4}{{6\, \times \,9}}\, + \,\frac{4}{{9\, \times \,12}}\, + \,\frac{4}{{12\, \times \,15}}$
Tính nhanh$D = \frac{7}{{1\, \times \,5}}\,\, + \,\,\frac{7}{{5\, \times \,9}}\,\, + \,\frac{7}{{9\, \times \,13}} + \,\frac{7}{{13\, \times \,17}}\, + \,\frac{7}{{17\, \times \,21}}$
Tính nhanh$E = \frac{1}{2} + \frac{1}{6} + \frac{1}{{12}} + \frac{1}{{20}} + \frac{1}{{30}} + \frac{1}{{42}} + .... + \frac{1}{{110}}$
Dãy phân số có quy luật là một chủ đề quan trọng trong chương trình Toán nâng cao lớp 5. Việc nắm vững phương pháp tính nhanh các dãy phân số này không chỉ giúp học sinh giải quyết các bài toán một cách hiệu quả mà còn rèn luyện tư duy logic và khả năng phân tích.
Dãy phân số có quy luật là dãy các phân số được sắp xếp theo một trật tự nhất định, tuân theo một quy tắc hoặc công thức nào đó. Quy luật này có thể là:
Ví dụ 1: Tính tổng của dãy phân số sau: 1/1 + 1/2 + 1/3 + ... + 1/10
Giải: Đây là dãy phân số có quy luật, trong đó tử số bằng 1 và mẫu số tăng dần từ 1 đến 10. Để tính tổng của dãy này, ta có thể quy đồng mẫu số và cộng các phân số lại với nhau. Tuy nhiên, cách này khá phức tạp. Thay vào đó, ta có thể sử dụng máy tính hoặc phần mềm để tính tổng trực tiếp.
Ví dụ 2: Tìm số hạng thứ 10 của dãy phân số sau: 2/3, 4/6, 6/9, ...
Giải: Ta thấy rằng tử số của mỗi phân số tăng lên 2 đơn vị, còn mẫu số tăng lên 3 đơn vị. Vậy số hạng thứ n của dãy phân số là (2n)/(3n). Do đó, số hạng thứ 10 của dãy là (2*10)/(3*10) = 20/30 = 2/3.
1. Tính tổng của dãy phân số sau: 1/2 + 1/4 + 1/8 + ... + 1/256
2. Tìm số hạng thứ 20 của dãy phân số sau: 1/1, 2/2, 3/3, ...
3. Tính giá trị của biểu thức sau: (1/2 + 1/3) * (1/4 + 1/5)
Hy vọng rằng bài học này tại giaitoan.edu.vn sẽ giúp các em học sinh lớp 5 nắm vững kiến thức về dạng toán tính nhanh dãy phân số có quy luật và đạt kết quả tốt trong các kỳ thi.