Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài tập cuối chương VII Toán 6 Kết nối tri thức

Trắc nghiệm Bài tập cuối chương VII Toán 6 Kết nối tri thức

Trắc nghiệm Bài tập cuối chương VII Toán 6 Kết nối tri thức

Chào mừng các em học sinh lớp 6 đến với chuyên mục trắc nghiệm Bài tập cuối chương VII môn Toán, chương trình Kết nối tri thức. Đây là cơ hội tuyệt vời để các em tự đánh giá năng lực, củng cố kiến thức đã học và chuẩn bị tốt nhất cho các bài kiểm tra sắp tới.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, bao gồm nhiều dạng bài tập khác nhau, được thiết kế bám sát nội dung sách giáo khoa và có đáp án chi tiết đi kèm.

Đề bài

    Câu 1 :

    Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:

    • A.

      \(2,5\)

    • B.

      \(5,2\)

    • C.

      \(0,4\)

    • D.

      \(0,04\)

    Câu 2 :

    Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:

    • A.

      \(1,2\)

    • B.

      \(1,4\)

    • C.

      \(1,5\)

    • D.

      \(1,8\)

    Câu 3 :

    Số thập phân \(3,015\) được chuyển thành phân số là:

    • A.

      \(\dfrac{{3015}}{{10}}\) 

    • B.

      \(\dfrac{{3015}}{{100}}\)

    • C.

      \(\dfrac{{3015}}{{1000}}\) 

    • D.

      \(\dfrac{{3015}}{{10000}}\)

    Câu 4 :

    Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:

    • A.

      $35$

    • B.

      $36$

    • C.

      $37$

    • D.

      $34$

    Câu 5 :

    Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).

    • A.

      \(x = 4\)

    • B.

      \(x = - 4\)

    • C.

      \(x = 5\)

    • D.

      \(x = - 0,2\)

    Câu 6 :

    Một người gửi tiết kiệm \(15.000.000\) đồng với lãi suất \(0,6\% \) một tháng thì sau một tháng người đó thu được tất cả bao nhiêu tiền?

    • A.

      \(15.090.000\) đồng

    • B.

      \(15.080.000\) đồng

    • C.

      \(15.085.000\) đồng

    • D.

      \(15.100.000\) đồng.

    Câu 7 :

    Trên đĩa có 64 quả táo. Hoa ăn hết 25% số táo. Sau đó Hùng ăn $\dfrac{3}{8}$ số táo còn lại. Hỏi trên đĩa còn bao nhiêu quả táo?

    • A.

      \(30\) quả

    • B.

      \(48\) quả

    • C.

      \(18\) quả

    • D.

      \(36\) quả

    Câu 8 :

    Lớp 6A có 48 học sinh. Số học sinh giỏi bằng 18,75% số học sinh cả lớp. Số học sinh trung bình bằng 300% số học sinh giỏi. Còn lại là học sinh khá. Tính tỉ số phần trăm số học sinh giỏi so với số học sinh khá.

    • A.

      \(50\% \)

    • B.

      \(125\% \)

    • C.

      \(75\% \)

    • D.

      \(70\% \)

    Câu 9 :

    Một nhà máy có ba phân xưởng, số công nhân của phân xưởng 1 bằng \(36\% \) tổng số công nhân của nhà máy. Số công nhân của phân xưởng 2 bằng \(\dfrac{3}{5}\) số công nhân của phân xưởng 3. Biết số công nhân của phân xưởng 1 là 18 người. Tính số công nhân của phân xưởng 3.

    • A.

      \(12\)

    • B.

      \(20\)

    • C.

      $18$

    • D.

      \(25\)

    Câu 10 :

    Người ta mở vòi cho nước chảy vào đầy bể cần \(3\) giờ. Hỏi nếu mở vòi nước đó trong \(45\) phút thì được bao nhiêu phần của bể?

    • A.

      \(\dfrac{1}{3}\)

    • B.

      \(\dfrac{1}{4}\)

    • C.

      $\dfrac{2}{3}$

    • D.

      \(\dfrac{1}{2}\)

    Câu 11 :

    Lúc 7 giờ 5 phút, một người đi xe máy đi từ A và đến B lúc 8 giờ 45 phút. Biết quãng đường AB dài 65km. Tính vận tốc của người đi xe máy đó?

    • A.

      \(39\) km/h

    • B.

      \(40\) km/h

    • C.

      $42$ km/h

    • D.

      \(44\) km/h

    Câu 12 :

    Cho \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\) và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\) . Chọn đáp án đúng.

    • A.

      \(A < - B\)

    • B.

      \(2A > B\)

    • C.

      \(A > B\)

    • D.

      \(A = B\)

    Câu 13 :

    Tìm x biết \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313}}{{151515}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313}}{{636363}} + \dfrac{{131313}}{{999999}}} \right) = - 5\)

    • A.

      \(x = - 40\)

    • B.

      \(x = 40\)

    • C.

      \(x = - 160\)

    • D.

      \(x = 160\)

    Lời giải và đáp án

    Câu 1 :

    Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:

    • A.

      \(2,5\)

    • B.

      \(5,2\)

    • C.

      \(0,4\)

    • D.

      \(0,04\)

    Đáp án : C

    Phương pháp giải :

    Chuyển phân số đó về phân số thập phân rồi viết dưới dạng số thập phân.

    Lời giải chi tiết :

    \(\dfrac{2}{5} = \dfrac{4}{{10}} = 0,4.\)

    Câu 2 :

    Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:

    • A.

      \(1,2\)

    • B.

      \(1,4\)

    • C.

      \(1,5\)

    • D.

      \(1,8\)

    Đáp án : B

    Phương pháp giải :

    Chuyển hỗn số đó về phân số thập phân, sau đó viết dưới dạng số thập phân.

    Lời giải chi tiết :

    \(1\dfrac{2}{5} = \dfrac{{1.5 + 2}}{5} = \dfrac{7}{5} = \dfrac{{14}}{{10}} = 1,4.\)

    Câu 3 :

    Số thập phân \(3,015\) được chuyển thành phân số là:

    • A.

      \(\dfrac{{3015}}{{10}}\) 

    • B.

      \(\dfrac{{3015}}{{100}}\)

    • C.

      \(\dfrac{{3015}}{{1000}}\) 

    • D.

      \(\dfrac{{3015}}{{10000}}\)

    Đáp án : C

    Phương pháp giải :

    Áp dụng qui tắc chuyển từ số thập phân về phân số.

    Lời giải chi tiết :

    \(3,015 = \dfrac{{3015}}{{1000}}\)

    Câu 4 :

    Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:

    • A.

      $35$

    • B.

      $36$

    • C.

      $37$

    • D.

      $34$

    Đáp án : B

    Phương pháp giải :

    Áp dụng qui tắc so sánh số thập phân để tìm được $x$

    Lời giải chi tiết :

    Ta có: \(35,67 < x < 36,05\) và \(x\) là số tự nhiên nên \(x = 36\).

    Câu 5 :

    Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).

    • A.

      \(x = 4\)

    • B.

      \(x = - 4\)

    • C.

      \(x = 5\)

    • D.

      \(x = - 0,2\)

    Đáp án : D

    Phương pháp giải :

    Chuyển phân số về số thập phân, áp dụng qui tắc nhân, chia số thập phân để tìm \(x\).

    Lời giải chi tiết :

    \(\begin{array}{l}2,4.x = \dfrac{{ - 6}}{5}.0,4\\2,4.x = - 1,2.0,4\\2,4.x = - 0,48\\x = - 0,48:2,4\\x = - 0,2.\end{array}\)

    Câu 6 :

    Một người gửi tiết kiệm \(15.000.000\) đồng với lãi suất \(0,6\% \) một tháng thì sau một tháng người đó thu được tất cả bao nhiêu tiền?

    • A.

      \(15.090.000\) đồng

    • B.

      \(15.080.000\) đồng

    • C.

      \(15.085.000\) đồng

    • D.

      \(15.100.000\) đồng.

    Đáp án : A

    Phương pháp giải :

    Áp dụng công thức: tiền lãi = tiền gốc :\(100 \times \) lãi suất

    Tiền 1 tháng thu được = tiền gốc + tiền lãi.

    Lời giải chi tiết :

    Tiền lãi thu được sau 1 tháng là: \(15.000.000:100\, \times 0,6 = 90.000\) đồng.

    Tổng số tiền thu được sau 1 tháng là: \(15.000.000 + 90.000 = 15.090.000\) đồng.

    Câu 7 :

    Trên đĩa có 64 quả táo. Hoa ăn hết 25% số táo. Sau đó Hùng ăn $\dfrac{3}{8}$ số táo còn lại. Hỏi trên đĩa còn bao nhiêu quả táo?

    • A.

      \(30\) quả

    • B.

      \(48\) quả

    • C.

      \(18\) quả

    • D.

      \(36\) quả

    Đáp án : A

    Phương pháp giải :

    Sử dụng cách tính giá trị phân số của một số cho trước

    Muốn tìm \(\dfrac{m}{n}\) của số \(b\) cho trước, ta tính \(b.\dfrac{m}{n}\) \(\left( {m,n \in \mathbb{N},n \ne 0} \right)\)

    Lời giải chi tiết :

    Hoa ăn số táo là \(25\% .64 = 16\) quả.

    Số táo còn lại là \(64 - 16 = 48\) quả

    Hùng ăn số táo là \(\dfrac{3}{8}.48 = 18\) quả.

    Số táo còn lại sau khi Hùng ăn là \(48 - 18 = 30\) quả.

    Câu 8 :

    Lớp 6A có 48 học sinh. Số học sinh giỏi bằng 18,75% số học sinh cả lớp. Số học sinh trung bình bằng 300% số học sinh giỏi. Còn lại là học sinh khá. Tính tỉ số phần trăm số học sinh giỏi so với số học sinh khá.

    • A.

      \(50\% \)

    • B.

      \(125\% \)

    • C.

      \(75\% \)

    • D.

      \(70\% \)

    Đáp án : C

    Phương pháp giải :

    + Tính số học sinh giỏi, học sinh trung bình và học sinh khá

    + Tính tỉ số phần trăm: Muốn tìm tỉ số phần trăm của hai số \(a\) và \(b\) , ta nhân \(a\) với \(100\) rồi chia cho \(b\) và viết kí hiệu % vào kết quả: \(\dfrac{{a.100}}{b}\% \)

    Lời giải chi tiết :

    Số học sinh giỏi của lớp là \(18,75\% .48 = 9\) học sinh

    Số học sinh trung bình là \(9.300\% = 27\) học sinh

    Số học sinh khá là \(48 - 9 - 27 = 12\) học sinh

    Tỉ số phần trăm số học sinh khá và số học sinh giỏi là: \(\dfrac{9}{{12}}.100\% = 75\% .\)

    Câu 9 :

    Một nhà máy có ba phân xưởng, số công nhân của phân xưởng 1 bằng \(36\% \) tổng số công nhân của nhà máy. Số công nhân của phân xưởng 2 bằng \(\dfrac{3}{5}\) số công nhân của phân xưởng 3. Biết số công nhân của phân xưởng 1 là 18 người. Tính số công nhân của phân xưởng 3.

    • A.

      \(12\)

    • B.

      \(20\)

    • C.

      $18$

    • D.

      \(25\)

    Đáp án : B

    Phương pháp giải :

    Sử dụng cách giá trị phân số của một số cho trước và cách tìm một số biết giá trị phân số của nó để tính toán theo các bước:

    + Tính số công nhân của cả nhà máy

    + Tính số công nhân của cả hai phân xưởng 2 và 3

    + Tính số công nhân của phân xưởng 2

    + Tính số công nhân của phân xưởng 3

    Lời giải chi tiết :

    Số công nhân của cả nhà máy là \(18:36\% = 50\) công nhân

    Số công nhân của phân xưởng 2 và phân xưởng 3 là \(50 - 18 = 32\) công nhân

    Vì số công nhân của phân xưởng 2 bằng \(\dfrac{3}{5}\) số công nhân của phân xưởng 3 nên số công nhân của phân xưởng 2 bằng \(\dfrac{3}{{3 + 5}} = \dfrac{3}{8}\) số công nhân của cả hai phân xưởng.

    Số công nhân của phân xưởng 2 là \(32.\dfrac{3}{8} = 12\) công nhân

    Số công nhân của phân xưởng ba là \(32 - 12 = 20\) công nhân

    Câu 10 :

    Người ta mở vòi cho nước chảy vào đầy bể cần \(3\) giờ. Hỏi nếu mở vòi nước đó trong \(45\) phút thì được bao nhiêu phần của bể?

    • A.

      \(\dfrac{1}{3}\)

    • B.

      \(\dfrac{1}{4}\)

    • C.

      $\dfrac{2}{3}$

    • D.

      \(\dfrac{1}{2}\)

    Đáp án : B

    Phương pháp giải :

    Tìm số phần bể vòi nước chảy được trong 1 giờ, rồi lấy kết quả đó nhân với thời gian mở vòi nước.

    Lời giải chi tiết :

    Đổi: \(45\)phút = \(\dfrac{3}{4}\) giờ

    Mỗi giờ vòi nước chảy được số phần bể là: \(1:3 = \dfrac{1}{3}\) (bể)

    Nếu mở vòi trong 45 phút thì được số phần bể là: \(\dfrac{3}{4}.\dfrac{1}{3} = \dfrac{1}{4}\)(bể)

    Câu 11 :

    Lúc 7 giờ 5 phút, một người đi xe máy đi từ A và đến B lúc 8 giờ 45 phút. Biết quãng đường AB dài 65km. Tính vận tốc của người đi xe máy đó?

    • A.

      \(39\) km/h

    • B.

      \(40\) km/h

    • C.

      $42$ km/h

    • D.

      \(44\) km/h

    Đáp án : A

    Phương pháp giải :

    Áp dụng công thức: vận tốc = quãng đường : thời gian.

    Lời giải chi tiết :

    Thời gian người đó đi hết quãng đường AB là: 8 giờ 45 phút – 7 giờ 5 phút = 1 giờ 40 phút

    Đổi 1 giờ 40 phút = \(\dfrac{5}{3}\) giờ.

    Vận tốc của người đi xe máy đó là: \(65:\dfrac{5}{3} = 39\left( {km/h} \right)\)

    Câu 12 :

    Cho \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\) và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\) . Chọn đáp án đúng.

    • A.

      \(A < - B\)

    • B.

      \(2A > B\)

    • C.

      \(A > B\)

    • D.

      \(A = B\)

    Đáp án : D

    Phương pháp giải :

    Chuyển hỗn số về dạng phân số rồi rút gọn từng biểu thức A; B để so sánh.

    Lời giải chi tiết :

    Ta có \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\)\( = \dfrac{{\left( {\dfrac{{47}}{{15}} + \dfrac{3}{{15}}} \right):\dfrac{5}{2}}}{{\left( {\dfrac{{38}}{7} - \dfrac{9}{4}} \right):\dfrac{{267}}{{56}}}} = \dfrac{{\dfrac{{50}}{{15}}.\dfrac{2}{5}}}{{\left( {\dfrac{{152}}{{28}} - \dfrac{{63}}{{28}}} \right).\dfrac{{56}}{{267}}}}\)\( = \dfrac{{\dfrac{4}{3}}}{{\dfrac{{89}}{{28}}.\dfrac{{56}}{{267}}}} = \dfrac{{\dfrac{4}{3}}}{{\dfrac{2}{3}}} = 2\)

    Và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\)\( = \dfrac{{\dfrac{6}{5}:\left( {\dfrac{6}{5}.\dfrac{5}{4}} \right)}}{{\dfrac{8}{{25}} + \dfrac{2}{{25}}}} = \dfrac{{\dfrac{6}{5}:\dfrac{3}{2}}}{{\dfrac{{10}}{{25}}}} = \dfrac{{\dfrac{4}{5}}}{{\dfrac{2}{5}}} = 2\)

    Vậy \(A = B.\)

    Câu 13 :

    Tìm x biết \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313}}{{151515}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313}}{{636363}} + \dfrac{{131313}}{{999999}}} \right) = - 5\)

    • A.

      \(x = - 40\)

    • B.

      \(x = 40\)

    • C.

      \(x = - 160\)

    • D.

      \(x = 160\)

    Đáp án : D

    Phương pháp giải :

    Rút gọn biểu thức trong ngoặc

    Sử dụng qui tắc chuyển vế đổi dấu để tìm x

    Lời giải chi tiết :

    Ta có \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313}}{{151515}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313}}{{636363}} + \dfrac{{131313}}{{999999}}} \right) = - 5\)

    \(\dfrac{1}{4}.x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313:10101}}{{151515:10101}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313:10101}}{{636363:10101}} + \dfrac{{131313:10101}}{{999999:10101}}} \right) = - 5\)

    \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{13}}{{15}} + \dfrac{{13}}{{35}} + \dfrac{{13}}{{63}} + \dfrac{{13}}{{99}}} \right) = - 5\)

    \(25\% .x - 70\dfrac{{10}}{{11}}:\left[ {13.\left( {\dfrac{1}{{3.5}} + \dfrac{1}{{5.7}} + \dfrac{1}{{7.9}} + \dfrac{1}{{9.11}}} \right)} \right] = - 5\)

    \(25\% .x - 70\dfrac{{10}}{{11}}:\left[ {\dfrac{{13}}{2}.\left( {\dfrac{1}{3} - \dfrac{1}{5} + \dfrac{1}{5} - \dfrac{1}{7} + \dfrac{1}{7} - \dfrac{1}{9} + \dfrac{1}{9} - \dfrac{1}{{11}}} \right)} \right] = - 5\)

    \(25\% .x - 70\dfrac{{10}}{{11}}:\left[ {\dfrac{{13}}{2}.\left( {\dfrac{1}{3} - \dfrac{1}{{11}}} \right)} \right] = - 5\)

    \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{13}}{2}.\dfrac{8}{{33}}} \right) = - 5\)

    \(\begin{array}{l}25\% .x - \dfrac{{780}}{{11}}:\dfrac{{52}}{{33}} = - 5\\25\% .x - \dfrac{{780}}{{11}}.\dfrac{{33}}{{52}} = - 5\\25\% .x - 45 = - 5\\25\% .x = - 5 + 45\\25\% .x = 40\\x = 40:\dfrac{{25}}{{100}}\\x = 160\end{array}\)

    Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Trắc nghiệm Bài tập cuối chương VII Toán 6 Kết nối tri thức – nội dung then chốt trong chuyên mục học toán lớp 6 trên nền tảng học toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

    Bài tập cuối chương VII Toán 6 Kết nối tri thức: Tổng quan và hướng dẫn

    Chương VII Toán 6 Kết nối tri thức tập trung vào các kiến thức về hình học, cụ thể là các khái niệm về góc, số đo góc, các loại góc (góc nhọn, góc vuông, góc tù, góc bẹt) và mối quan hệ giữa chúng. Việc nắm vững các khái niệm này là nền tảng quan trọng cho các chương học tiếp theo.

    Các chủ đề chính trong chương VII

    • Góc: Định nghĩa, ký hiệu, cách đặt tên góc.
    • Số đo góc: Đơn vị đo góc (độ), cách sử dụng thước đo góc.
    • Các loại góc: Phân loại góc dựa trên số đo.
    • Hai góc bằng nhau: Điều kiện để hai góc bằng nhau.
    • Hai góc kề nhau: Định nghĩa, tính chất.
    • Hai góc phụ nhau: Định nghĩa, tính chất.
    • Hai góc bù nhau: Định nghĩa, tính chất.

    Lợi ích của việc luyện tập trắc nghiệm

    Luyện tập trắc nghiệm là một phương pháp học tập hiệu quả, mang lại nhiều lợi ích cho học sinh:

    • Kiểm tra kiến thức: Giúp học sinh tự đánh giá mức độ hiểu bài và xác định những kiến thức còn yếu.
    • Rèn luyện kỹ năng: Phát triển kỹ năng giải quyết vấn đề, tư duy logic và khả năng áp dụng kiến thức vào thực tế.
    • Làm quen với cấu trúc đề thi: Giúp học sinh làm quen với dạng đề thi trắc nghiệm thường gặp, từ đó giảm bớt áp lực và tự tin hơn khi làm bài thi.
    • Tiết kiệm thời gian: Trắc nghiệm giúp học sinh ôn tập kiến thức một cách nhanh chóng và hiệu quả.

    Hướng dẫn giải các dạng bài tập trắc nghiệm thường gặp

    Dạng 1: Xác định loại góc

    Để xác định loại góc, học sinh cần dựa vào số đo của góc:

    • Góc nhọn: Góc có số đo nhỏ hơn 90 độ.
    • Góc vuông: Góc có số đo bằng 90 độ.
    • Góc tù: Góc có số đo lớn hơn 90 độ nhưng nhỏ hơn 180 độ.
    • Góc bẹt: Góc có số đo bằng 180 độ.

    Ví dụ: Góc có số đo 45 độ là góc nhọn.

    Dạng 2: Tính số đo góc

    Để tính số đo góc, học sinh cần sử dụng các tính chất của góc:

    • Hai góc phụ nhau có tổng số đo bằng 90 độ.
    • Hai góc bù nhau có tổng số đo bằng 180 độ.

    Ví dụ: Nếu góc A và góc B là hai góc phụ nhau và góc A có số đo 30 độ thì số đo góc B là 90 - 30 = 60 độ.

    Dạng 3: So sánh hai góc

    Để so sánh hai góc, học sinh cần dựa vào số đo của chúng:

    • Nếu số đo của góc A lớn hơn số đo của góc B thì góc A lớn hơn góc B.
    • Nếu số đo của góc A nhỏ hơn số đo của góc B thì góc A nhỏ hơn góc B.
    • Nếu số đo của góc A bằng số đo của góc B thì góc A bằng góc B.

    Ví dụ: Góc có số đo 70 độ lớn hơn góc có số đo 50 độ.

    Một số lưu ý khi làm bài trắc nghiệm

    • Đọc kỹ đề bài trước khi trả lời.
    • Sử dụng thước đo góc chính xác.
    • Kiểm tra lại đáp án trước khi nộp bài.
    • Luyện tập thường xuyên để nâng cao kỹ năng.

    Tổng kết

    Trắc nghiệm Bài tập cuối chương VII Toán 6 Kết nối tri thức là một công cụ hữu ích giúp học sinh ôn tập và củng cố kiến thức. Hy vọng với những hướng dẫn trên, các em sẽ tự tin hơn khi làm bài trắc nghiệm và đạt kết quả tốt nhất.

    Chúc các em học tập tốt!

    Tài liệu, đề thi và đáp án Toán 6