Chào mừng các em học sinh đến với bài trắc nghiệm Toán 6 Bài 26: Phép nhân và phép chia phân số, thuộc chương trình Kết nối tri thức. Bài trắc nghiệm này được thiết kế để giúp các em ôn luyện và củng cố kiến thức đã học về các phép toán với phân số.
Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, bao gồm nhiều dạng bài tập khác nhau, từ cơ bản đến nâng cao, giúp các em tự đánh giá năng lực và chuẩn bị tốt nhất cho các bài kiểm tra sắp tới.
Chọn phát biểu đúng nhất trong các phát biểu sau:
Muốn nhân hai phân số, ta lấy tử số nhân với tử số, mẫu số nhân với mẫu số.
Phân số nào nhân với $1$ cũng bằng chính nó.
Phân số nào nhân với $0$ cũng bằng $0$
Cả A, B, C đều đúng
Tính: \(\dfrac{5}{8}\; \cdot \dfrac{{ - 3}}{4}\)
\(\dfrac{{ - 1}}{{16}}\)
\( - 2\)
\(\dfrac{{ - 15}}{{32}}\)
\(\dfrac{{ - 5}}{{32}}\)
Chọn câu đúng.
\({\left( {\dfrac{{ - 7}}{6}} \right)^2} = \dfrac{{ - 49}}{{36}}\)
\({\left( {\dfrac{2}{3}} \right)^3} = \dfrac{8}{9}\)
\({\left( {\dfrac{2}{{ - 3}}} \right)^3} = \dfrac{8}{{ - 27}}\)
\({\left( {\dfrac{{ - 2}}{3}} \right)^4} = \dfrac{{ - 16}}{{81}}\)
Kết quả của phép tính \(\left( { - 2} \right).\dfrac{3}{8}\) là
$\dfrac{{ - 16}}{8}$
\(\dfrac{{ - 13}}{8}\)
\(\dfrac{{ - 6}}{{16}}\)
\( - \dfrac{3}{4}\)
Tính \(\dfrac{9}{{14}} \cdot \dfrac{{ - 5}}{8} \cdot \dfrac{{14}}{9}\)
\(\dfrac{{ - 15}}{{28}}\)
\(\dfrac{{ - 9}}{{28}}\)
\(\dfrac{{ - 5}}{8}\)
\(\dfrac{{ - 7}}{8}\)
Tìm \(x\) biết \(x:\left( { - \dfrac{2}{5}} \right) = \dfrac{3}{{54}}\)
$x=\dfrac{{ - 1}}{{27}}$
\(x=\dfrac{{ - 1}}{{18}}\)
\(x=\dfrac{{ - 1}}{9}\)
\(x=\dfrac{{ - 1}}{{45}}\)
Tính giá trị biểu thức $A = \left( {\dfrac{{11}}{4}.\dfrac{{ - 5}}{9} - \dfrac{4}{9}.\dfrac{{11}}{4}} \right).\dfrac{8}{{33}}$
$A = - \dfrac{2}{3}$
$A = \dfrac{2}{3}$
$A = - \dfrac{3}{2}$
$A = \dfrac{3}{2}$
Phân số nghịch đảo của phân số \(\dfrac{5}{6}\) là
$ - \dfrac{5}{6}$
\(\dfrac{6}{5}\)
\( - \dfrac{6}{5}\)
\(1\)
Tính diện tích một hình tam giác biết hai cạnh góc vuông của tam giác đó lần lượt là \(\dfrac{5}{3}\)cm và \(\dfrac{7}{4}\)cm?
\(\dfrac{{33}}{{24}}\,c{m^2}\)
\(\dfrac{{35}}{{12}}c{m^2}\)
\(\dfrac{{35}}{{24}}\,c{m^2}\)
\(\dfrac{{33}}{{12}}\,c{m^2}\)
Điền số thích hợp vào ô trống
Độ cao của đáy vịnh Cam Ranh là -32 m. Độ cao của đáy sông Sài Gòn bằng \(\dfrac{5}{8}\) ở độ cao của đáy vịnh Cam Ranh. Vậy độ cao của đáy sông Sài Gòn là
mét
Điền số thích hợp vào ô trống
Chim ruồi ong hiện là loài chim bé nhỏ nhất trên Trái Đất với chiều dài chỉ khoảng 5 cm. Chim ruồi “khổng lồ” ở Nam Mỹ là thành viên lớn nhất của gia đình chim ruồi trên thế giới, nó dài gấp \(\dfrac{{33}}{8}\) lần chim ruồi ong. Chiều dài của chim ruồi “khổng lồ” ở Nam Mỹ là
cm
Tính \(\dfrac{2}{3}:\dfrac{1}{2}\) bằng
$3$
\(1\)
\(\dfrac{1}{3}\)
\(\dfrac{4}{3}\)
Tìm \(x\) biết \(\dfrac{{13}}{{25}}:x = \dfrac{5}{{26}}\).
$\dfrac{2}{5}$
\(\dfrac{{338}}{{125}}\)
\(\dfrac{5}{2}\)
\(\dfrac{{125}}{{338}}\)
Tính giá trị của biểu thức.
\(\left( {\dfrac{{ - 2}}{{ - 5}}:\dfrac{3}{{ - 4}}} \right).\dfrac{4}{5}\)
\(\dfrac{{75}}{{32}}\)
\(\dfrac{{32}}{{75}}\)
\(\dfrac{{ - 32}}{{75}}\)
\(\dfrac{{ - 75}}{{32}}\)
Điền số thích hợp vào ô trống:
Một ô tô chạy hết \(\dfrac{3}{4}\) giờ trên một đoạn đường với vận tốc trung bình 40km/h.
Người lái xe muốn thời gian chạy hết đoạn đường đó chỉ \(\dfrac{1}{2}\) giờ thì ô tô phải chạy với vận tốc trung bình là:
\(km/h\)
Tính \(\dfrac{2}{3}:\dfrac{7}{{12}}:\dfrac{4}{{18}}\)
$\dfrac{7}{{18}}$
\(\dfrac{9}{{14}}\)
\(\dfrac{{36}}{7}\)
\(\dfrac{{18}}{7}\)
Rút gọn \(N = \dfrac{{\dfrac{4}{{17}} - \dfrac{4}{{49}} - \dfrac{4}{{131}}}}{{\dfrac{3}{{17}} - \dfrac{3}{{49}} - \dfrac{3}{{131}}}}\) ta được
$\dfrac{4}{3}$
\(1\)
\(0\)
\( - \dfrac{4}{3}\)
Một hình chữ nhật có diện tích là \(\dfrac{8}{{15}}\,\left( {c{m^2}} \right)\), chiều dài là \(\dfrac{4}{3}\,\left( {cm} \right)\). Tính chu vi hình chữ nhật đó.
\(\dfrac{{52}}{5}\left( {cm} \right)\)
\(\dfrac{{26}}{{15}}\left( {cm} \right)\)
\(\dfrac{{52}}{{15}}\left( {cm} \right)\)
\(\dfrac{{52}}{{15}}\left( {c{m^2}} \right)\)
Điền số thích hợp vào ô trống
Bạn Hoà đã đọc hết một cuốn truyện dày 80 trang trong ba ngày. Biết ngày thứ nhất bạn Hoà đọc được \(\dfrac{3}{8}\) số trang cuốn truyện, ngày thứ hai đọc được \(\dfrac{2}{5}\) số trang cuốn truyện. Số trang bạn Hoà đã đọc được trong ngày thứ ba là
trang
Lời giải và đáp án
Chọn phát biểu đúng nhất trong các phát biểu sau:
Muốn nhân hai phân số, ta lấy tử số nhân với tử số, mẫu số nhân với mẫu số.
Phân số nào nhân với $1$ cũng bằng chính nó.
Phân số nào nhân với $0$ cũng bằng $0$
Cả A, B, C đều đúng
Đáp án : D
Muốn nhân hai phân số, ta lấy tử số nhân với tử số, mẫu số nhân với mẫu số.
Phân số nào nhân với $1$ cũng bằng chính nó.
Phân số nào nhân với $0$ cũng bằng $0$
Vậy cả A, B, C đều đúng.
Tính: \(\dfrac{5}{8}\; \cdot \dfrac{{ - 3}}{4}\)
\(\dfrac{{ - 1}}{{16}}\)
\( - 2\)
\(\dfrac{{ - 15}}{{32}}\)
\(\dfrac{{ - 5}}{{32}}\)
Đáp án : C
Muốn nhân hai phân số, ta lấy tử số nhân với tử số, mẫu số nhân với mẫu số.
\(\dfrac{5}{8}\; \cdot \dfrac{{ - 3}}{4} = \dfrac{{5.\left( { - 3} \right)}}{{8.4}} = \dfrac{{ - 15}}{{32}}\)
Chọn câu đúng.
\({\left( {\dfrac{{ - 7}}{6}} \right)^2} = \dfrac{{ - 49}}{{36}}\)
\({\left( {\dfrac{2}{3}} \right)^3} = \dfrac{8}{9}\)
\({\left( {\dfrac{2}{{ - 3}}} \right)^3} = \dfrac{8}{{ - 27}}\)
\({\left( {\dfrac{{ - 2}}{3}} \right)^4} = \dfrac{{ - 16}}{{81}}\)
Đáp án : C
Thực hiện các phép tính ở mỗi đáp án rồi kết luận đáp án đúng.
Sử dụng nhận xét lũy thừa của một phân số:
Với \(n \in N\) thì \({\left( {\dfrac{a}{b}} \right)^n} = \underbrace {\dfrac{a}{b}.\dfrac{a}{b}...\dfrac{a}{b}}_{n\,\,{\rm{thừa}}\,{\rm{số}}} = \dfrac{{{a^n}}}{{{b^n}}}\)
Đáp án A: \({\left( {\dfrac{{ - 7}}{6}} \right)^2} = \dfrac{{{{\left( { - 7} \right)}^2}}}{{{6^2}}} = \dfrac{{49}}{{36}} \ne \dfrac{{ - 49}}{{36}}\) nên A sai.
Đáp án B: \({\left( {\dfrac{2}{3}} \right)^3} = \dfrac{{{2^3}}}{{{3^3}}} = \dfrac{8}{{27}} \ne \dfrac{8}{9}\) nên B sai.
Đáp án C: \({\left( {\dfrac{2}{{ - 3}}} \right)^3} = \dfrac{{{2^3}}}{{{{\left( { - 3} \right)}^3}}} = \dfrac{8}{{ - 27}}\) nên C đúng.
Đáp án D: \({\left( {\dfrac{{ - 2}}{3}} \right)^4} = \dfrac{{{{\left( { - 2} \right)}^4}}}{{{3^4}}} = \dfrac{{16}}{{81}} \ne \dfrac{{ - 16}}{{81}}\) nên D sai.
Kết quả của phép tính \(\left( { - 2} \right).\dfrac{3}{8}\) là
$\dfrac{{ - 16}}{8}$
\(\dfrac{{ - 13}}{8}\)
\(\dfrac{{ - 6}}{{16}}\)
\( - \dfrac{3}{4}\)
Đáp án : D
Muốn nhân một số nguyên với một phân số (hoặc một phân số với một số nguyên), ta nhân số nguyên với tử của phân số và giữ nguyên mẫu: \(a.\dfrac{b}{c} = \dfrac{{a.b}}{c}\)
Chú ý rút gọn kết quả thu được.
\(\left( { - 2} \right).\dfrac{3}{8} = \dfrac{{\left( { - 2} \right).3}}{8} = \dfrac{{ - 6}}{8} = \dfrac{{ - 3}}{4}\)
Tính \(\dfrac{9}{{14}} \cdot \dfrac{{ - 5}}{8} \cdot \dfrac{{14}}{9}\)
\(\dfrac{{ - 15}}{{28}}\)
\(\dfrac{{ - 9}}{{28}}\)
\(\dfrac{{ - 5}}{8}\)
\(\dfrac{{ - 7}}{8}\)
Đáp án : C
Áp dụng tính chất giao hoán của phép nhân phân số để tính nhanh.
+) Công thức tính nhanh: \(\dfrac{a}{b}.\dfrac{b}{a} = 1.\)
\(\dfrac{9}{{14}} \cdot \dfrac{{ - 5}}{8} \cdot \dfrac{{14}}{9} = \left( {\dfrac{9}{{14}} \cdot \dfrac{{14}}{9}} \right) \cdot \dfrac{{ - 5}}{8} = 1.\dfrac{{ - 5}}{8} = \dfrac{{ - 5}}{8}.\)
Tìm \(x\) biết \(x:\left( { - \dfrac{2}{5}} \right) = \dfrac{3}{{54}}\)
$x=\dfrac{{ - 1}}{{27}}$
\(x=\dfrac{{ - 1}}{{18}}\)
\(x=\dfrac{{ - 1}}{9}\)
\(x=\dfrac{{ - 1}}{{45}}\)
Đáp án : D
Muốn tìm số bị chia, ta lấy thương nhân với số chia.
\(\begin{array}{l}x:\left( { - \dfrac{2}{5}} \right) = \dfrac{3}{{54}}\\x = \dfrac{3}{{54}}.\left( { - \dfrac{2}{5}} \right)\\x = \dfrac{1}{{18}}.\dfrac{{ - 2}}{5}\\x = \dfrac{{ - 1}}{{45}}\end{array}\)
Tính giá trị biểu thức $A = \left( {\dfrac{{11}}{4}.\dfrac{{ - 5}}{9} - \dfrac{4}{9}.\dfrac{{11}}{4}} \right).\dfrac{8}{{33}}$
$A = - \dfrac{2}{3}$
$A = \dfrac{2}{3}$
$A = - \dfrac{3}{2}$
$A = \dfrac{3}{2}$
Đáp án : A
+ Tính trong ngoặc bằng cách sử dụng tính chất phân phối của phép nhân với phép trừ $ab - ac = a\left( {b - c} \right)$
+ Thực hiện phép nhân hai phân số rồi rút gọn kết quả thu được.
Ta có $A = \left( {\dfrac{{11}}{4}.\dfrac{{ - 5}}{9} - \dfrac{4}{9}.\dfrac{{11}}{4}} \right).\dfrac{8}{{33}}$ $ = \dfrac{{11}}{4}.\left( {\dfrac{{ - 5}}{9} - \dfrac{4}{9}} \right).\dfrac{8}{{33}} = \dfrac{{11}}{4}.\dfrac{{ - 9}}{9}.\dfrac{8}{{33}}$ $ = \dfrac{{ - 11}}{4}.\dfrac{8}{{33}} = \dfrac{{ - 2}}{3}$
Phân số nghịch đảo của phân số \(\dfrac{5}{6}\) là
$ - \dfrac{5}{6}$
\(\dfrac{6}{5}\)
\( - \dfrac{6}{5}\)
\(1\)
Đáp án : B
+ Phân số nghịch đảo của \(\dfrac{a}{b}\) là \(\dfrac{b}{a}\)
Phân số nghịch đảo của phân số \(\dfrac{5}{6}\) là \(\dfrac{6}{5}\)
Tính diện tích một hình tam giác biết hai cạnh góc vuông của tam giác đó lần lượt là \(\dfrac{5}{3}\)cm và \(\dfrac{7}{4}\)cm?
\(\dfrac{{33}}{{24}}\,c{m^2}\)
\(\dfrac{{35}}{{12}}c{m^2}\)
\(\dfrac{{35}}{{24}}\,c{m^2}\)
\(\dfrac{{33}}{{12}}\,c{m^2}\)
Đáp án : C
Áp dụng công thức xác định diện tích tam giác vuông: \(S = \dfrac{1}{2}a.b\) với \(a,b\) là hai cạnh góc vuông của tam giác vuông đó.
Diện tích hình tam giác đó là: \(S = \dfrac{1}{2}.\dfrac{5}{3}.\dfrac{7}{4} = \dfrac{{1.5.7}}{{2.3.4}} = \dfrac{{35}}{{24}}\,c{m^2}\)
Điền số thích hợp vào ô trống
Độ cao của đáy vịnh Cam Ranh là -32 m. Độ cao của đáy sông Sài Gòn bằng \(\dfrac{5}{8}\) ở độ cao của đáy vịnh Cam Ranh. Vậy độ cao của đáy sông Sài Gòn là
mét
Độ cao của đáy vịnh Cam Ranh là -32 m. Độ cao của đáy sông Sài Gòn bằng \(\dfrac{5}{8}\) ở độ cao của đáy vịnh Cam Ranh. Vậy độ cao của đáy sông Sài Gòn là
-20mét
Độ cao của đáy sông Sài Gòn = Độ cao của đáy vịnh Cam Ranh . \(\dfrac{5}{8}\)
Độ cao của đáy sông Sài Gòn là:
\( - 32.\dfrac{5}{8} = \dfrac{{ - 32.5}}{8} = - 20\) (mét)
Điền số thích hợp vào ô trống
Chim ruồi ong hiện là loài chim bé nhỏ nhất trên Trái Đất với chiều dài chỉ khoảng 5 cm. Chim ruồi “khổng lồ” ở Nam Mỹ là thành viên lớn nhất của gia đình chim ruồi trên thế giới, nó dài gấp \(\dfrac{{33}}{8}\) lần chim ruồi ong. Chiều dài của chim ruồi “khổng lồ” ở Nam Mỹ là
cm
Chim ruồi ong hiện là loài chim bé nhỏ nhất trên Trái Đất với chiều dài chỉ khoảng 5 cm. Chim ruồi “khổng lồ” ở Nam Mỹ là thành viên lớn nhất của gia đình chim ruồi trên thế giới, nó dài gấp \(\dfrac{{33}}{8}\) lần chim ruồi ong. Chiều dài của chim ruồi “khổng lồ” ở Nam Mỹ là
20,625 hoặc 20.625cm
Chiều dài của chim ruồi “khổng lồ” ở Nam Mỹ = \(\dfrac{{33}}{8}\). Chiều dài của chim ruồi ong.
Chim ruồi ong hiện có chiều dài khoảng 5 cm.
Chim ruồi "khổng lồ" ở Nam Mỹ dài gấp \(\dfrac{{33}}{8}\) lần chim ruồi ong.
Chiều dài của chim ruồi "khổng lồ" ở Nam Mỹ là:
\(\dfrac{{33}}{8}.5 = \dfrac{{33.5}}{8} = \dfrac{{165}}{8} = 20,625\)(cm).
Tính \(\dfrac{2}{3}:\dfrac{1}{2}\) bằng
$3$
\(1\)
\(\dfrac{1}{3}\)
\(\dfrac{4}{3}\)
Đáp án : D
Muốn chia hai phân số ta nhân phân số thứ nhất với nghịch đảo của phân số thứ hai.
\(\dfrac{2}{3}:\dfrac{1}{2} = \dfrac{2}{3}.\dfrac{2}{1} = \dfrac{4}{3}\)
Tìm \(x\) biết \(\dfrac{{13}}{{25}}:x = \dfrac{5}{{26}}\).
$\dfrac{2}{5}$
\(\dfrac{{338}}{{125}}\)
\(\dfrac{5}{2}\)
\(\dfrac{{125}}{{338}}\)
Đáp án : B
Xác định được rằng \(x\) là số chia nên ta tìm \(x\) bằng cách lấy số bị chia chia cho thương.
Sử dụng qui tắc chia hai phân số để tìm ra kết quả.
\(\begin{array}{l}\dfrac{{13}}{{25}}:x = \dfrac{5}{{26}}\\x = \dfrac{{13}}{{25}}:\dfrac{5}{{26}}\\x = \dfrac{{13}}{{25}}.\dfrac{{26}}{5}\\x = \dfrac{{338}}{{125}}\end{array}\)
Tính giá trị của biểu thức.
\(\left( {\dfrac{{ - 2}}{{ - 5}}:\dfrac{3}{{ - 4}}} \right).\dfrac{4}{5}\)
\(\dfrac{{75}}{{32}}\)
\(\dfrac{{32}}{{75}}\)
\(\dfrac{{ - 32}}{{75}}\)
\(\dfrac{{ - 75}}{{32}}\)
Đáp án : C
Tính theo thứ tự trong ngoặc trước, ngoài ngoặc sau.
\(\begin{array}{l}\left( {\dfrac{{ - 2}}{{ - 5}}:\dfrac{3}{{ - 4}}} \right).\dfrac{4}{5} = \left( {\dfrac{2}{5}.\dfrac{{ - 4}}{3}} \right).\dfrac{4}{5}\\ = \dfrac{{ - 8}}{{15}}.\dfrac{4}{5} = \dfrac{{ - 32}}{{75}}\end{array}\)
Điền số thích hợp vào ô trống:
Một ô tô chạy hết \(\dfrac{3}{4}\) giờ trên một đoạn đường với vận tốc trung bình 40km/h.
Người lái xe muốn thời gian chạy hết đoạn đường đó chỉ \(\dfrac{1}{2}\) giờ thì ô tô phải chạy với vận tốc trung bình là:
\(km/h\)
Một ô tô chạy hết \(\dfrac{3}{4}\) giờ trên một đoạn đường với vận tốc trung bình 40km/h.
Người lái xe muốn thời gian chạy hết đoạn đường đó chỉ \(\dfrac{1}{2}\) giờ thì ô tô phải chạy với vận tốc trung bình là:
60\(km/h\)
Công thức tính độ dài quãng đường: \(S = {v_{tb}}.t\)
Công thức tính vận tốc trung bình: \({v_{tb}} = s:t\)
Quãng đường ô tô đi được là: \(S = {v_{tb}}.t = 40.\dfrac{3}{4} = 30\,(km)\)
Người lái xe muốn thời gian chạy hết đoạn đường đó chỉ \(\dfrac{1}{2}\) giờ thì ô tô phải chạy với vận tốc trung bình là: \({v_{tb}} = s:t = 30:\dfrac{1}{2} = 60\,\,\left( {km/h} \right)\)
Tính \(\dfrac{2}{3}:\dfrac{7}{{12}}:\dfrac{4}{{18}}\)
$\dfrac{7}{{18}}$
\(\dfrac{9}{{14}}\)
\(\dfrac{{36}}{7}\)
\(\dfrac{{18}}{7}\)
Đáp án : C
Trong biểu thức chỉ chứa nhân, chia, ta thực hiện từ trái qua phải.
Chú ý: Muốn chia hai phân số, ta thực hiện nhân phân số thứ nhất với nghịch đảo của phân số thứ hai.
\(\begin{array}{l}\dfrac{2}{3}:\dfrac{7}{{12}}:\dfrac{4}{{18}}\\ = \left( {\dfrac{2}{3}:\dfrac{7}{{12}}} \right):\dfrac{4}{{18}}\\ = \left( {\dfrac{2}{3}.\dfrac{{12}}{7}} \right):\dfrac{4}{{18}}\\ = \dfrac{8}{7}:\dfrac{4}{{18}}\\ = \dfrac{8}{7}.\dfrac{{18}}{4}\\ = \dfrac{{36}}{7}\end{array}\)
Rút gọn \(N = \dfrac{{\dfrac{4}{{17}} - \dfrac{4}{{49}} - \dfrac{4}{{131}}}}{{\dfrac{3}{{17}} - \dfrac{3}{{49}} - \dfrac{3}{{131}}}}\) ta được
$\dfrac{4}{3}$
\(1\)
\(0\)
\( - \dfrac{4}{3}\)
Đáp án : A
Biến đổi tử và mẫu của \(N\) về dạng tích, rút gọn các thừa số chung của cả tử và mẫu rồi kết luận.
\(N = \dfrac{{\dfrac{4}{{17}} - \dfrac{4}{{49}} - \dfrac{4}{{131}}}}{{\dfrac{3}{{17}} - \dfrac{3}{{49}} - \dfrac{3}{{131}}}}\)\( = \dfrac{{4.\dfrac{1}{{17}} - 4.\dfrac{1}{{49}} - 4.\dfrac{1}{{131}}}}{{3.\dfrac{1}{{17}} - 3.\dfrac{1}{{49}} - 3.\dfrac{1}{{131}}}}\) \( = \dfrac{{4.\left( {\dfrac{1}{{17}} - \dfrac{1}{{49}} - \dfrac{1}{{131}}} \right)}}{{3.\left( {\dfrac{1}{{17}} - \dfrac{1}{{49}} - \dfrac{1}{{131}}} \right)}} = \dfrac{4}{3}\)
Một hình chữ nhật có diện tích là \(\dfrac{8}{{15}}\,\left( {c{m^2}} \right)\), chiều dài là \(\dfrac{4}{3}\,\left( {cm} \right)\). Tính chu vi hình chữ nhật đó.
\(\dfrac{{52}}{5}\left( {cm} \right)\)
\(\dfrac{{26}}{{15}}\left( {cm} \right)\)
\(\dfrac{{52}}{{15}}\left( {cm} \right)\)
\(\dfrac{{52}}{{15}}\left( {c{m^2}} \right)\)
Đáp án : C
+ Tính chiều rộng hình chữ nhật bằng cách lấy diện tích chia cho chiều dài
+ Tính chu vi hình chữ nhật bằng cách lấy tổng chiều dài và chiều rộng tất cả nhân hai.
Chiều rộng hình chữ nhật là: \(\dfrac{8}{{15}}:\dfrac{4}{3} = \dfrac{2}{5}\left( {cm} \right)\)
Cho vi hình chữ nhật là: \(\left( {\dfrac{4}{3} + \dfrac{2}{5}} \right).2 = \dfrac{{52}}{{15}}\left( {cm} \right)\)
Điền số thích hợp vào ô trống
Bạn Hoà đã đọc hết một cuốn truyện dày 80 trang trong ba ngày. Biết ngày thứ nhất bạn Hoà đọc được \(\dfrac{3}{8}\) số trang cuốn truyện, ngày thứ hai đọc được \(\dfrac{2}{5}\) số trang cuốn truyện. Số trang bạn Hoà đã đọc được trong ngày thứ ba là
trang
Bạn Hoà đã đọc hết một cuốn truyện dày 80 trang trong ba ngày. Biết ngày thứ nhất bạn Hoà đọc được \(\dfrac{3}{8}\) số trang cuốn truyện, ngày thứ hai đọc được \(\dfrac{2}{5}\) số trang cuốn truyện. Số trang bạn Hoà đã đọc được trong ngày thứ ba là
18trang
- Tính số trang bạn Hòa đọc được trong ngày thứ nhất = tổng số trang . \(\dfrac{3}{8}\)
- Tính số trang bạn Hòa đọc được trong ngày thứ hai = tổng số trang . \(\dfrac{2}{5}\)
=> Số trang bạn Hòa đọc được trong ngày thứ ba.
Số trang bạn Hòa đọc được trong ngày thứ nhất là: 80.\(\dfrac{3}{8}\) = 30 (trang)
Số trang bạn Hòa đọc được trong ngày thứ hai là: 80.\(\dfrac{2}{5}\) = 32 (trang)
Số trang bạn Hòa đọc được trong ngày thứ ba là: 80 - 32 - 30 = 18 trang
Bài 26 trong chương trình Toán 6 Kết nối tri thức tập trung vào hai phép toán quan trọng với phân số: phép nhân và phép chia. Việc nắm vững các quy tắc và kỹ năng thực hiện hai phép toán này là nền tảng cho các kiến thức toán học nâng cao hơn. Bài trắc nghiệm này sẽ giúp học sinh rèn luyện và kiểm tra mức độ hiểu bài của mình.
Để nhân hai phân số, ta nhân các tử số với nhau và nhân các mẫu số với nhau. Công thức tổng quát:
a/b * c/d = (a*c) / (b*d)
Ví dụ: 2/3 * 4/5 = (2*4) / (3*5) = 8/15
Để chia hai phân số, ta thực hiện phép nhân phân số thứ nhất với nghịch đảo của phân số thứ hai. Nghịch đảo của phân số a/b là b/a (với a khác 0).
Công thức tổng quát:
a/b : c/d = a/b * d/c = (a*d) / (b*c)
Ví dụ: 3/4 : 1/2 = 3/4 * 2/1 = 6/4 = 3/2
Để giải các bài tập trắc nghiệm về phép nhân và chia phân số, học sinh cần:
Câu 1: Tính (2/5) * (3/7)
A. 6/35 B. 5/12 C. 1/5 D. 1/7
Giải: (2/5) * (3/7) = (2*3) / (5*7) = 6/35. Vậy đáp án đúng là A.
Câu 2: Tính (4/9) : (2/3)
A. 2/3 B. 8/27 C. 4/6 D. 3/2
Giải: (4/9) : (2/3) = (4/9) * (3/2) = (4*3) / (9*2) = 12/18 = 2/3. Vậy đáp án đúng là A.
Hãy thực hành giải nhiều bài tập trắc nghiệm khác nhau để củng cố kiến thức và kỹ năng về phép nhân và chia phân số. Giaitoan.edu.vn cung cấp một nguồn tài liệu phong phú và đa dạng để giúp các em học tập hiệu quả.
Ngoài phép nhân và chia phân số, các em cũng nên tìm hiểu về các phép toán khác với phân số như phép cộng và phép trừ. Việc nắm vững tất cả các phép toán này sẽ giúp các em giải quyết các bài toán phức tạp hơn một cách dễ dàng.
Bài trắc nghiệm này là một công cụ hữu ích để giúp học sinh ôn tập và củng cố kiến thức về phép nhân và chia phân số. Hãy sử dụng nó một cách hiệu quả để đạt được kết quả tốt nhất trong học tập.