Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 6: Thứ tự thực hiện các phép tính Toán 6 Kết nối tri thức

Trắc nghiệm Bài 6: Thứ tự thực hiện các phép tính Toán 6 Kết nối tri thức

Trắc nghiệm Bài 6: Thứ tự thực hiện các phép tính Toán 6 Kết nối tri thức

Chào mừng các em học sinh đến với bài trắc nghiệm trực tuyến về Thứ tự thực hiện các phép tính trong chương trình Toán 6 Kết nối tri thức. Bài trắc nghiệm này được thiết kế để giúp các em củng cố kiến thức đã học và rèn luyện kỹ năng giải toán.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, bao gồm nhiều dạng bài tập khác nhau, từ cơ bản đến nâng cao, giúp các em tự tin hơn khi làm bài kiểm tra.

Đề bài

    Câu 1 :

    Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?

    • A.

      Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa

    • B.

      Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ

    • C.

      Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ 

    • D.

      Cả ba đáp án A,B,C đều đúng

    Câu 2 :

    Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?

    • A.

      \(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)

    • B.

      \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

    • C.

      \(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)

    • D.

      \(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)

    Câu 3 :

    Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là

    • A.

      $100$ 

    • B.

      $95$ 

    • C.

      $105$ 

    • D.

      $80$ 

    Câu 4 :

    Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)

    • A.

      6

    • B.
      3
    • C.
      2
    • D.
      1
    Câu 5 :

    Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là

    • A.

      $319$

    • B.

      $931$

    • C.

      $193$

    • D.

      $391$

    Câu 6 :

    Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:

    • A.

      $9$

    • B.

      $10$

    • C.

       $11$

    • D.

      $12$

    Câu 7 :

    Tìm \(x\) thỏa mãn \(165 - \left( {35:x + 3} \right).19 = 13\).

    • A.

      $x = 7$

    • B.

       $x = 8$

    • C.

      $x = 9$

    • D.

       $x = 10$

    Câu 8 :

    Thực hiện phép tính \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\) một cách hợp lý ta được

    • A.

      $132$ 

    • B.

      $312$

    • C.

      $213$

    • D.

      $215$

    Câu 9 :

    Phép toán \({6^2}:4.3 + {2.5^2}\) có kết quả là:

    • A.

      $77$

    • B.

      $78$

    • C.

      $79$

    • D.

      $80$

    Câu 10 :

    Tìm $x$ biết: $914 - [(x - 300) + x] = 654\;$.

    • A.

      $x = 560$

    • B.

      $x = 280$

    • C.

      $x = 20$

    • D.

      $x = 40$

    Lời giải và đáp án

    Câu 1 :

    Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?

    • A.

      Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa

    • B.

      Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ

    • C.

      Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ 

    • D.

      Cả ba đáp án A,B,C đều đúng

    Đáp án : C

    Lời giải chi tiết :

    Đối với biểu thức không có dấu ngoặc thì thứ tự thực hiện phép tính đúng là : Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ

    Câu 2 :

    Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?

    • A.

      \(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)

    • B.

      \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

    • C.

      \(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)

    • D.

      \(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)

    Đáp án : B

    Lời giải chi tiết :

    Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

    Câu 3 :

    Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là

    • A.

      $100$ 

    • B.

      $95$ 

    • C.

      $105$ 

    • D.

      $80$ 

    Đáp án : C

    Phương pháp giải :

    Thực hiện phép tính nâng lên lũy thừa rồi đến nhân chia cuối cùng là cộng trừ.

    Lời giải chi tiết :

    Ta có \({2^4} - 50:25 + 13.7\)\( = 16 - 2 + 91 = 14 + 91 = 105\)

    Câu 4 :

    Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)

    • A.

      6

    • B.
      3
    • C.
      2
    • D.
      1

    Đáp án : A

    Phương pháp giải :

    Thực hiện phép tính trong ngoặc tròn ( ) trước: Lũy thừa \( \to \) nhân và chia \( \to \) cộng và trừ.

    Lấy kết quả trong ngoặc nhân với 3.

    Lời giải chi tiết :

    \(3.\left( {{2^3}.4 - 6.5} \right) = 3.\left( {8.4 - 6.5} \right)\)\( = 3.\left( {32 - 30} \right) = 3.2 = 6\)

    Câu 5 :

    Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là

    • A.

      $319$

    • B.

      $931$

    • C.

      $193$

    • D.

      $391$

    Đáp án : D

    Phương pháp giải :

    Thực hiện phép tính trong ngoặc đơn trước rồi tính trong ngoặc vuông.

    Sau đó là phép lũy thừa, nhân và trừ các kết quả.

    Lời giải chi tiết :

    Ta có \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\)

    \( = {3^4}.6 - \left( {131 - {6^2}} \right)\)

    \( = 81.6 - \left( {131 - 36} \right)\)

    \( = 486 - 95 = 391.\)

    Câu 6 :

    Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:

    • A.

      $9$

    • B.

      $10$

    • C.

       $11$

    • D.

      $12$

    Đáp án : B

    Phương pháp giải :

    + Tính vế phải sau đó tìm thừa số chưa biết bằng cách lấy tích chia cho thừa số đã biết.

    + Sử dụng mối quan hệ giữa số hạng và tổng để tìm $x$

    Lời giải chi tiết :

    \(\begin{array}{l}5(x + 15) = {5^3}\\5(x + 15) = 125\\x + 15 = 125:5\\x + 15\, = 25\\x\,\, = 25 - 15\\x\, = 10.\end{array}\)

    Câu 7 :

    Tìm \(x\) thỏa mãn \(165 - \left( {35:x + 3} \right).19 = 13\).

    • A.

      $x = 7$

    • B.

       $x = 8$

    • C.

      $x = 9$

    • D.

       $x = 10$

    Đáp án : A

    Phương pháp giải :

    Dựa vào mối quan hệ giữa số hạng và tổng, giữa số bị trừ, số trừ và hiệu hoặc giữa thừa số và tích để tìm $x$.

    Lời giải chi tiết :

    \(\begin{array}{l}165 - \left( {35:x + 3} \right).19 = 13\\\left( {35:x + 3} \right).19\, = 165 - 13\\\left( {35:x + 3} \right).19 = 152\\35:x + 3 = 152:19\\35:x + 3\, = 8\\35:x\, = 8 - 3\\35:x\,\, = 5\\x\, = 35:5\\x = 7.\end{array}\)

    Câu 8 :

    Thực hiện phép tính \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\) một cách hợp lý ta được

    • A.

      $132$ 

    • B.

      $312$

    • C.

      $213$

    • D.

      $215$

    Đáp án : C

    Phương pháp giải :

    Dùng tính chất \(\left( {a + b + c} \right):m = a:m + b:m + c:m\)

    Và các công thức lũy thừa \({\left( {a.b} \right)^n} = {a^n}.{b^n};\,{\left( {{a^n}} \right)^m} = {a^{n.m}};\,{a^m}:{a^n} = {a^{m - n}}\) để tính toán.

    Lời giải chi tiết :

    Ta có \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\)

    \( = {10^3}:{5^3} + {10^4}:{5^3} + {125^2}:{5^3}\)

    \( = {\left( {2.5} \right)^3}:{5^3} + {\left( {2.5} \right)^4}:{5^3} + {\left( {{5^3}} \right)^2}:{5^3}\)

    \( = {2^3}{.5^3}:{5^3} + {2^4}{.5^4}:{5^3} + {5^6}:{5^3}\)

    \( = {2^3} + {2^4}.5 + {5^3}\)

    \( = 8 + 16.5 + 125\)

    $ = 8 + 80 + 125 = 213.$

    Câu 9 :

    Phép toán \({6^2}:4.3 + {2.5^2}\) có kết quả là:

    • A.

      $77$

    • B.

      $78$

    • C.

      $79$

    • D.

      $80$

    Đáp án : A

    Phương pháp giải :

    Thực hiện phép tính nâng lên lũy thừa rồi đến nhân chia cuối cùng là cộng trừ.

    Lời giải chi tiết :

    Ta có \({6^2}:4.3 + {2.5^2} = 36:4.3 + 2.25 = 9.3 + 50 = 27 + 50 = 77\).

    Câu 10 :

    Tìm $x$ biết: $914 - [(x - 300) + x] = 654\;$.

    • A.

      $x = 560$

    • B.

      $x = 280$

    • C.

      $x = 20$

    • D.

      $x = 40$

    Đáp án : B

    Phương pháp giải :

    Bước 1: Phá ngoặc tròn rồi thực hiện phép tính trong ngoặc vuông Bước 2: Coi biểu thức trong ngoặc là số trừ chưa biết Muốn tìm số trừ chưa biết ta lấy số bị trừ trừ đi hiệu Bước 3: Coi \(2x\) là số bị trừ chưa biết Muốn tìm số bị trừ ta lấy hiệu cộng với số trừMuốn tìm thừa số chưa biết ta lấy tích chia cho thừa số đã biết.

    Lời giải chi tiết :

    Ta có: 

    $914 - [(x - 300) + x] = 654\;$

    \(\begin{array}{l}914 - \left( {x - 300 + x} \right) = 654\\914 - \left( {2x - 300} \right) = 654\\2x - 300 = 914 - 654\\2x - 300 = 260\\2x = 260 + 300\\2x = 560\\x = 560:2\\x = 280\end{array}\) Vậy \(x = 280.\)

    Lời giải và đáp án

      Câu 1 :

      Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?

      • A.

        Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa

      • B.

        Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ

      • C.

        Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ 

      • D.

        Cả ba đáp án A,B,C đều đúng

      Câu 2 :

      Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?

      • A.

        \(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)

      • B.

        \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

      • C.

        \(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)

      • D.

        \(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)

      Câu 3 :

      Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là

      • A.

        $100$ 

      • B.

        $95$ 

      • C.

        $105$ 

      • D.

        $80$ 

      Câu 4 :

      Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)

      • A.

        6

      • B.
        3
      • C.
        2
      • D.
        1
      Câu 5 :

      Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là

      • A.

        $319$

      • B.

        $931$

      • C.

        $193$

      • D.

        $391$

      Câu 6 :

      Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:

      • A.

        $9$

      • B.

        $10$

      • C.

         $11$

      • D.

        $12$

      Câu 7 :

      Tìm \(x\) thỏa mãn \(165 - \left( {35:x + 3} \right).19 = 13\).

      • A.

        $x = 7$

      • B.

         $x = 8$

      • C.

        $x = 9$

      • D.

         $x = 10$

      Câu 8 :

      Thực hiện phép tính \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\) một cách hợp lý ta được

      • A.

        $132$ 

      • B.

        $312$

      • C.

        $213$

      • D.

        $215$

      Câu 9 :

      Phép toán \({6^2}:4.3 + {2.5^2}\) có kết quả là:

      • A.

        $77$

      • B.

        $78$

      • C.

        $79$

      • D.

        $80$

      Câu 10 :

      Tìm $x$ biết: $914 - [(x - 300) + x] = 654\;$.

      • A.

        $x = 560$

      • B.

        $x = 280$

      • C.

        $x = 20$

      • D.

        $x = 40$

      Câu 1 :

      Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?

      • A.

        Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa

      • B.

        Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ

      • C.

        Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ 

      • D.

        Cả ba đáp án A,B,C đều đúng

      Đáp án : C

      Lời giải chi tiết :

      Đối với biểu thức không có dấu ngoặc thì thứ tự thực hiện phép tính đúng là : Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ

      Câu 2 :

      Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?

      • A.

        \(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)

      • B.

        \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

      • C.

        \(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)

      • D.

        \(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)

      Đáp án : B

      Lời giải chi tiết :

      Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

      Câu 3 :

      Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là

      • A.

        $100$ 

      • B.

        $95$ 

      • C.

        $105$ 

      • D.

        $80$ 

      Đáp án : C

      Phương pháp giải :

      Thực hiện phép tính nâng lên lũy thừa rồi đến nhân chia cuối cùng là cộng trừ.

      Lời giải chi tiết :

      Ta có \({2^4} - 50:25 + 13.7\)\( = 16 - 2 + 91 = 14 + 91 = 105\)

      Câu 4 :

      Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)

      • A.

        6

      • B.
        3
      • C.
        2
      • D.
        1

      Đáp án : A

      Phương pháp giải :

      Thực hiện phép tính trong ngoặc tròn ( ) trước: Lũy thừa \( \to \) nhân và chia \( \to \) cộng và trừ.

      Lấy kết quả trong ngoặc nhân với 3.

      Lời giải chi tiết :

      \(3.\left( {{2^3}.4 - 6.5} \right) = 3.\left( {8.4 - 6.5} \right)\)\( = 3.\left( {32 - 30} \right) = 3.2 = 6\)

      Câu 5 :

      Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là

      • A.

        $319$

      • B.

        $931$

      • C.

        $193$

      • D.

        $391$

      Đáp án : D

      Phương pháp giải :

      Thực hiện phép tính trong ngoặc đơn trước rồi tính trong ngoặc vuông.

      Sau đó là phép lũy thừa, nhân và trừ các kết quả.

      Lời giải chi tiết :

      Ta có \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\)

      \( = {3^4}.6 - \left( {131 - {6^2}} \right)\)

      \( = 81.6 - \left( {131 - 36} \right)\)

      \( = 486 - 95 = 391.\)

      Câu 6 :

      Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:

      • A.

        $9$

      • B.

        $10$

      • C.

         $11$

      • D.

        $12$

      Đáp án : B

      Phương pháp giải :

      + Tính vế phải sau đó tìm thừa số chưa biết bằng cách lấy tích chia cho thừa số đã biết.

      + Sử dụng mối quan hệ giữa số hạng và tổng để tìm $x$

      Lời giải chi tiết :

      \(\begin{array}{l}5(x + 15) = {5^3}\\5(x + 15) = 125\\x + 15 = 125:5\\x + 15\, = 25\\x\,\, = 25 - 15\\x\, = 10.\end{array}\)

      Câu 7 :

      Tìm \(x\) thỏa mãn \(165 - \left( {35:x + 3} \right).19 = 13\).

      • A.

        $x = 7$

      • B.

         $x = 8$

      • C.

        $x = 9$

      • D.

         $x = 10$

      Đáp án : A

      Phương pháp giải :

      Dựa vào mối quan hệ giữa số hạng và tổng, giữa số bị trừ, số trừ và hiệu hoặc giữa thừa số và tích để tìm $x$.

      Lời giải chi tiết :

      \(\begin{array}{l}165 - \left( {35:x + 3} \right).19 = 13\\\left( {35:x + 3} \right).19\, = 165 - 13\\\left( {35:x + 3} \right).19 = 152\\35:x + 3 = 152:19\\35:x + 3\, = 8\\35:x\, = 8 - 3\\35:x\,\, = 5\\x\, = 35:5\\x = 7.\end{array}\)

      Câu 8 :

      Thực hiện phép tính \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\) một cách hợp lý ta được

      • A.

        $132$ 

      • B.

        $312$

      • C.

        $213$

      • D.

        $215$

      Đáp án : C

      Phương pháp giải :

      Dùng tính chất \(\left( {a + b + c} \right):m = a:m + b:m + c:m\)

      Và các công thức lũy thừa \({\left( {a.b} \right)^n} = {a^n}.{b^n};\,{\left( {{a^n}} \right)^m} = {a^{n.m}};\,{a^m}:{a^n} = {a^{m - n}}\) để tính toán.

      Lời giải chi tiết :

      Ta có \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\)

      \( = {10^3}:{5^3} + {10^4}:{5^3} + {125^2}:{5^3}\)

      \( = {\left( {2.5} \right)^3}:{5^3} + {\left( {2.5} \right)^4}:{5^3} + {\left( {{5^3}} \right)^2}:{5^3}\)

      \( = {2^3}{.5^3}:{5^3} + {2^4}{.5^4}:{5^3} + {5^6}:{5^3}\)

      \( = {2^3} + {2^4}.5 + {5^3}\)

      \( = 8 + 16.5 + 125\)

      $ = 8 + 80 + 125 = 213.$

      Câu 9 :

      Phép toán \({6^2}:4.3 + {2.5^2}\) có kết quả là:

      • A.

        $77$

      • B.

        $78$

      • C.

        $79$

      • D.

        $80$

      Đáp án : A

      Phương pháp giải :

      Thực hiện phép tính nâng lên lũy thừa rồi đến nhân chia cuối cùng là cộng trừ.

      Lời giải chi tiết :

      Ta có \({6^2}:4.3 + {2.5^2} = 36:4.3 + 2.25 = 9.3 + 50 = 27 + 50 = 77\).

      Câu 10 :

      Tìm $x$ biết: $914 - [(x - 300) + x] = 654\;$.

      • A.

        $x = 560$

      • B.

        $x = 280$

      • C.

        $x = 20$

      • D.

        $x = 40$

      Đáp án : B

      Phương pháp giải :

      Bước 1: Phá ngoặc tròn rồi thực hiện phép tính trong ngoặc vuông Bước 2: Coi biểu thức trong ngoặc là số trừ chưa biết Muốn tìm số trừ chưa biết ta lấy số bị trừ trừ đi hiệu Bước 3: Coi \(2x\) là số bị trừ chưa biết Muốn tìm số bị trừ ta lấy hiệu cộng với số trừMuốn tìm thừa số chưa biết ta lấy tích chia cho thừa số đã biết.

      Lời giải chi tiết :

      Ta có: 

      $914 - [(x - 300) + x] = 654\;$

      \(\begin{array}{l}914 - \left( {x - 300 + x} \right) = 654\\914 - \left( {2x - 300} \right) = 654\\2x - 300 = 914 - 654\\2x - 300 = 260\\2x = 260 + 300\\2x = 560\\x = 560:2\\x = 280\end{array}\) Vậy \(x = 280.\)

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Trắc nghiệm Bài 6: Thứ tự thực hiện các phép tính Toán 6 Kết nối tri thức – nội dung then chốt trong chuyên mục sgk toán lớp 6 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Bài 6: Thứ tự thực hiện các phép tính - Toán 6 Kết nối tri thức

      Trong chương trình Toán 6 Kết nối tri thức, Bài 6 tập trung vào việc nắm vững thứ tự thực hiện các phép tính. Đây là một kiến thức nền tảng quan trọng, giúp học sinh giải quyết các bài toán phức tạp một cách chính xác và hiệu quả.

      I. Thứ tự thực hiện các phép tính là gì?

      Thứ tự thực hiện các phép tính được quy định như sau:

      1. Trong ngoặc: Thực hiện các phép tính trong ngoặc trước. Nếu có nhiều ngoặc lồng nhau, thực hiện từ ngoặc trong cùng ra ngoài.
      2. Lũy thừa: Thực hiện các phép tính lũy thừa (ví dụ: 23).
      3. Nhân và chia: Thực hiện các phép tính nhân và chia theo thứ tự từ trái sang phải.
      4. Cộng và trừ: Thực hiện các phép tính cộng và trừ theo thứ tự từ trái sang phải.

      II. Ví dụ minh họa

      Ví dụ 1: Tính giá trị của biểu thức: 5 + 2 x 3

      Áp dụng thứ tự thực hiện các phép tính, ta có:

      1. Thực hiện phép nhân trước: 2 x 3 = 6
      2. Thực hiện phép cộng sau: 5 + 6 = 11

      Vậy, 5 + 2 x 3 = 11

      Ví dụ 2: Tính giá trị của biểu thức: (12 - 4) : 2

      Áp dụng thứ tự thực hiện các phép tính, ta có:

      1. Thực hiện phép tính trong ngoặc trước: 12 - 4 = 8
      2. Thực hiện phép chia sau: 8 : 2 = 4

      Vậy, (12 - 4) : 2 = 4

      III. Các dạng bài tập thường gặp

      Các bài tập về thứ tự thực hiện các phép tính thường gặp các dạng sau:

      • Tính giá trị của biểu thức: Yêu cầu học sinh tính giá trị của một biểu thức số, áp dụng đúng thứ tự thực hiện các phép tính.
      • Điền vào chỗ trống: Yêu cầu học sinh điền số hoặc phép tính thích hợp vào chỗ trống để hoàn thành biểu thức.
      • Tìm số thích hợp: Yêu cầu học sinh tìm một số thỏa mãn điều kiện cho trước, liên quan đến thứ tự thực hiện các phép tính.
      • Bài toán có nhiều ngoặc: Yêu cầu học sinh giải quyết các biểu thức có nhiều ngoặc lồng nhau.

      IV. Luyện tập - Trắc nghiệm Bài 6

      Để giúp các em nắm vững kiến thức và rèn luyện kỹ năng, giaitoan.edu.vn cung cấp bộ trắc nghiệm Bài 6: Thứ tự thực hiện các phép tính Toán 6 Kết nối tri thức với nhiều câu hỏi đa dạng.

      Câu 1: Tính giá trị của biểu thức: 10 - 2 x 4

      A. 2 B. 8 C. 18 D. 20

      Câu 2: Tính giá trị của biểu thức: (5 + 3) x 2

      A. 8 B. 10 C. 16 D. 20

      Câu 3: Tính giá trị của biểu thức: 15 : 3 + 2

      A. 3 B. 5 C. 7 D. 9

      Câu 4: Tính giá trị của biểu thức: 23 - 1

      A. 3 B. 7 C. 8 D. 9

      Câu 5: Tính giá trị của biểu thức: (10 - 5) : 5

      A. 1 B. 2 C. 3 D. 4

      V. Mẹo giải nhanh

      Để giải nhanh các bài tập về thứ tự thực hiện các phép tính, các em nên:

      • Gạch chân hoặc khoanh tròn các phép tính cần thực hiện trước.
      • Thực hiện các phép tính theo đúng thứ tự đã quy định.
      • Kiểm tra lại kết quả sau khi tính toán.

      VI. Kết luận

      Nắm vững thứ tự thực hiện các phép tính là một kỹ năng quan trọng trong Toán học. Hy vọng với bộ trắc nghiệm Bài 6: Thứ tự thực hiện các phép tính Toán 6 Kết nối tri thức của giaitoan.edu.vn, các em sẽ tự tin hơn trong việc giải toán và đạt kết quả tốt nhất.

      Tài liệu, đề thi và đáp án Toán 6