Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài tập cuối chương III Toán 6 Kết nối tri thức

Trắc nghiệm Bài tập cuối chương III Toán 6 Kết nối tri thức

Trắc nghiệm Bài tập cuối chương III Toán 6 Kết nối tri thức

Chào mừng các em học sinh lớp 6 đến với chuyên mục trắc nghiệm Bài tập cuối chương III môn Toán, chương trình Kết nối tri thức. Đây là cơ hội tuyệt vời để các em tự đánh giá kiến thức đã học và rèn luyện kỹ năng giải bài tập.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, bao gồm nhiều dạng bài tập khác nhau, được thiết kế bám sát nội dung sách giáo khoa và các dạng bài thường gặp trong các bài kiểm tra.

Đề bài

    Câu 1 :

    Cho các số sau: \(1280;\, - 291;\;\,43;\, - 52;\;\,28;\;\,1;\;\,0\) . Các số đã cho sắp xếp theo thứ tự giảm dần là:

    • A.

      \( - 291;\, - 52;\,\;0;\;\,1;\,\;28;\,\;43;\,\;1280\)

    • B.

      \(1280;\,\;43;\,\;28;\,\;1;\;\,0;\, - 52;\, - 291\)

    • C.

      \(0;\,\;1;\;\,28;\;\,43;\, - 52;\, - 291;\;\,1280\)

    • D.

      \(1280;\,\;43;\,\;28;\,\;1;\;\,0;\, - 291;\, - 52\)

    Câu 2 :

    Cho \(E = \left\{ {3;\, - 8;\,0} \right\}\) . Tập hợp F gồm các phần tử của E và các số đối của chúng là?­

    • A.

      \(F = \left\{ {3;\,8;\;\,0;\, - ­3} \right\}\)

    • B.

      \(F = \left\{ { - 3;\, - 8;\,\;0} \right\}\)

    • C.

      \(F = \left\{ {3;\, - 8;\,\;0;\, - 3} \right\}\;\)

    • D.

      \(F = \left\{ {3;\, - 8;\,\;0;\, - 3;\,\;8} \right\}\)

    Câu 3 :

    Cho \(x - 236\) là số đối của số 0 thì x là:

    • A.

      \( - 234\)

    • B.

      \(234\)

    • C.

      \(0\) 

    • D.

      \(236\)

    Câu 4 :

    Tính tổng của các số nguyên x, biết: $ - 7 < \;x \le {\rm{5}}.$

    • A.

      $6$

    • B.

      $0$

    • C.

      $-6$

    • D.

      $5$

    Câu 5 :

    Bỏ ngoặc rồi tính: $\left( {52 - 69 + 17} \right) - \left( {52 + 17} \right)\;$ ta được kết quả là

    • A.

      $69$

    • B.

      $0$

    • C.

      $-69$

    • D.

      $52$

    Câu 6 :

    Tìm x biết: $17 - \left( {x + 84} \right) = 107$

    • A.

      $-174$

    • B.

      $6$

    • C.

      $-6$

    • D.

      $174$

    Câu 7 :

    Tìm $x$ biết: $44 - x - 16{\rm{ }} = - 60$

    • A.

      \(x = - 88\)

    • B.

      \(x = - 42\)

    • C.

      \(x = 42\)

    • D.

      \(x = 88\)

    Câu 8 :

    Chọn câu trả lời đúng:

    • A.

      \(\left( { - 9} \right) + 19 = 19 + \left( { - 9} \right)\) 

    • B.

      \(\left( { - 9} \right) + 19 > 19 + \left( { - 9} \right)\)

    • C.

      \(\left( { - 9} \right) + 19 < 19 + \left( { - 9} \right)\)

    • D.

      \(\left( { - 9} \right) + \left( { - 9} \right) = 19 + 19\)

    Câu 9 :

    Tìm $x\; \in \;Z,$ biết: $8\;\, \vdots \;\,x$ và $15\,\; \vdots \;\,x$ .

    • A.

      $x\; = 1$

    • B.

      $x\; \in \;\left\{ { - 1;{\rm{ }}1} \right\}$ 

    • C.

      $x\; = - 1$

    • D.

      $x\; \in \;\left\{ { - 1;{\rm{ }}1;2;3} \right\}$

    Câu 10 :

    Thực hiện phép tính $455 - 5.\left[ {\left( { - 5} \right) + 4.\left( { - 8} \right)} \right]$ ta được kết quả là

    • A.

      Một số chia hết cho 10

    • B.

      Một số chẵn chia hết cho 3

    • C.

      Một số lẻ

    • D.

      Một số lẻ chia hết cho 5

    Câu 11 :

    Tính $\left( { - 9} \right).\left( { - 12} \right) - \left( { - 13} \right).6\;$

    • A.

      $186$

    • B.

      $164$

    • C.

      $30$

    • D.

      $168$

    Câu 12 :

    Thực hiện phép tính \( - 567 - \left( { - 113} \right) + \left( { - 69} \right) - \left( {113 - 567} \right)\) ta được kết quả là

    • A.

      \(69\)

    • B.

      \(-69\)

    • C.

      \(96\)

    • D.

      \(0\)

    Câu 13 :

    Tìm $x,$ biết: $\left( {x - 12} \right).\left( {8 + x} \right) = 0$

    • A.

      \(x = 12\)

    • B.

      \(x = - 8\)

    • C.

      \(x = 12\) hoặc \(x = - 8\)

    • D.

      \(x = 0\)

    Câu 14 :

    Tính \( - 4.[12:{( - 2)^2} - 4.( - 3)] - {( - 12)^2}\) ta được kết quả là

    • A.

      \( - 144\)

    • B.

      \(144\)

    • C.

      \( - 204\)

    • D.

      \(204\)

    Câu 15 :

    Cho  \(A = - 128.\left[ {\left( { - 25} \right) + 89} \right] + 128.\left( {89 - 125} \right)\) . Chọn câu đúng.

    • A.

      Giá trị của A là số có chữ số tận cùng là 0

    • B.

      Giá trị của A là số lẻ

    • C.

      Giá trị của A là số dương

    • D.

      Giá trị của A là số chia hết cho 3

    Câu 16 :

    Cho \({x_1}\) là số nguyên thỏa mãn \({\left( {x + 3} \right)^3}:3 - 1 = - 10\) . Chọn câu đúng.

    • A.

      \({x_1} > - 4\)

    • B.

      \({x_1} > 0\)

    • C.

      \({x_1} = - 5\) 

    • D.

      \({x_1} < - 5\)

    Câu 17 :

    Cho \(x \in \mathbb{Z}\) và $-5$ là bội của \(x + 2\) thì giá trị của x bằng:

    • A.

      \( - 1;\,1;\,5;\, - 5\)

    • B.

      \( \pm 3;\, \pm 7\)

    • C.

      \( - 1;\, - 3;\,3;\, - 7\)

    • D.

      \(7;\, - 7\)

    Câu 18 :

    Khi \(x = - 12\) giá trị của biểu thức \(\left( {x - 8} \right)\left( {x + 17} \right)\) là:

    • A.

      \( - 100\)

    • B.

      \(100\)

    • C.

      \( - 96\)

    • D.

      Một kết quả khác

    Câu 19 :

    Cho x là số nguyên và \(x + 1\) là ước của 5 thì giá trị của x là:

    • A.

      \(0;\, - 2;\,\;4;\, - 6\)

    • B.

      \(0;\, - 2;\;\,4;\;\,6\)

    • C.

      \(0;\,\;1;\;\,3;\,\;6\)

    • D.

      \(2;\, - 4;\, - 6;\,\;7\)

    Câu 20 :

    Chọn câu đúng nhất. Với \(a,b,c \in \mathbb{Z}\) :

    • A.

      \(a\left( {b - c} \right) - a\left( {b + d} \right) = - a\left( {c + d} \right)\)

    • B.

      \(a\left( {b + c} \right) - b\left( {a - c} \right) = \left( {a + b} \right)c.\)

    • C.

      A, B đều sai

    • D.

      A, B đều đúng

    Câu 21 :

    Tìm các số $x,{\rm{ }}y,{\rm{ }}z$ biết: $x + y = 11,{\rm{ }}y + z = 10,{\rm{ }}z + x = - 3$.

    • A.

      \(x = - 1;y = 12;z = - 2.\)

    • B.

      \(x = - 1;y = 11;z = - 2.\)

    • C.

      \(x = - 2;y = - 1;z = 12.\)

    • D.

      \(x = 12;y = - 1;z = - 2.\)

    Câu 22 :

    Có bao nhiêu số nguyên n thỏa mãn \(\left( {2n - 1} \right) \vdots \left( {n + 1} \right)\) ?

    • A.

      \(1\)

    • B.

      \(2\) 

    • C.

      \(3\)

    • D.

      \(4\)

    Câu 23 :

    Tìm tổng các số nguyên $n$ biết: \(\left( {n + 3} \right)\left( {n - 2} \right) < 0\) .

    • A.

      \( - 3\)

    • B.

      \( - 2\)

    • C.

      \( 0\)

    • D.

      \(4\)

    Câu 24 :

    Tìm giá trị lớn nhất của biểu thức: \(C = - {\left( {x - 5} \right)^2} + 10\)

    • A.

      \( - 10\)

    • B.

      \(5\)

    • C.

      \(0\)

    • D.

      \(10\)

    Lời giải và đáp án

    Câu 1 :

    Cho các số sau: \(1280;\, - 291;\;\,43;\, - 52;\;\,28;\;\,1;\;\,0\) . Các số đã cho sắp xếp theo thứ tự giảm dần là:

    • A.

      \( - 291;\, - 52;\,\;0;\;\,1;\,\;28;\,\;43;\,\;1280\)

    • B.

      \(1280;\,\;43;\,\;28;\,\;1;\;\,0;\, - 52;\, - 291\)

    • C.

      \(0;\,\;1;\;\,28;\;\,43;\, - 52;\, - 291;\;\,1280\)

    • D.

      \(1280;\,\;43;\,\;28;\,\;1;\;\,0;\, - 291;\, - 52\)

    Đáp án : B

    Phương pháp giải :

    Ta sử dụng các kiến thức:

    + Khi biểu diễn trên trục số, điểm a nằm bên trái điểm b thì số nguyên a nhỏ hơn số nguyên b

    + Mọi số nguyên dương đều lớn hơn số $0.$

    + Mọi số nguyên âm đều nhỏ hơn số $0.$

    + Mọi số nguyên âm đều nhỏ hơn bất kì số nguyên dương nào.

    + Từ đó sắp xếp các số theo thứ tự giảm dần.

    Lời giải chi tiết :

    Các số được xếp theo thứ tự giảm dần là: \(1280;\,\;43;\,\;28;\;\,1;\;\,0;\, - 52;\, - 291.\)

    Câu 2 :

    Cho \(E = \left\{ {3;\, - 8;\,0} \right\}\) . Tập hợp F gồm các phần tử của E và các số đối của chúng là?­

    • A.

      \(F = \left\{ {3;\,8;\;\,0;\, - ­3} \right\}\)

    • B.

      \(F = \left\{ { - 3;\, - 8;\,\;0} \right\}\)

    • C.

      \(F = \left\{ {3;\, - 8;\,\;0;\, - 3} \right\}\;\)

    • D.

      \(F = \left\{ {3;\, - 8;\,\;0;\, - 3;\,\;8} \right\}\)

    Đáp án : D

    Phương pháp giải :

    Sử dụng khái niệm tập hợp và khái niệm số đối của tập hợp để tìm ra tập hợp F.

    Số đối của a là –a; số đối của 0 là 0.

    Lời giải chi tiết :

    Tập hợp F gồm các phần tử của E và \(E = \left\{ {3; - \,8;\,0} \right\}\) nên $3; - 8;0$ là các phần tử của tập F

    Số đối của 3 là -3

    Số đối của -8 là 8

    Số đối của 0 là 0

    Do đó tập hợp F gồm các phần tử của E và các số đối của chúng là \(F = \left\{ {3;\, - 8;\;\,0;\, - 3;\;\,8} \right\}\)

    Câu 3 :

    Cho \(x - 236\) là số đối của số 0 thì x là:

    • A.

      \( - 234\)

    • B.

      \(234\)

    • C.

      \(0\) 

    • D.

      \(236\)

    Đáp án : D

    Phương pháp giải :

    + Số đối của 0 là 0.

    + Áp dụng quy tắc chuyển vế, quy tắc cộng hai số nguyên cùng dấu để tìm x.

    Lời giải chi tiết :

    Số đối của số 0 là 0.

    Vì \(x - 236\) là số đối của số 0 nên

    \(\begin{array}{l}x - 236 = 0\\x\;\;\;\;\;\;\;\;\; = 0 + 236\\x\;\;\;\;\;\;\;\;\; = 236.\end{array}\)

    Câu 4 :

    Tính tổng của các số nguyên x, biết: $ - 7 < \;x \le {\rm{5}}.$

    • A.

      $6$

    • B.

      $0$

    • C.

      $-6$

    • D.

      $5$

    Đáp án : C

    Phương pháp giải :

    Bước 1: Tìm các giá trị của x thỏa mãn $ - 7 < \;x \le {\rm{5}}.$ Bước 2: Tính tổng các giá trị của x vừa tìm được

    Lời giải chi tiết :

    Vì $ - 7 < \;x \le {\rm{5}}$ nên $x\; \in \;\left\{ { - 6; - 5; - 4; - 3; - 2; - 1;0;1;2;3;4;5} \right\}$ Tổng các số nguyên $x$ là: $( - 6) + ( - 5) + ( - 4) + ( - 3) + ( - 2) + ( - 1) + 0 + 1 + 2 + 3 + 4 + 5$$ = \left( { - 6} \right) + [( - 5) + 5\left] { + \left[ {\left( { - 4} \right) + 4} \right] + } \right[( - 3) + 3\left] + \right[( - 2) + 2\left] + \right[( - 1) + 1] + 0$$ = ( - 6) + 0 + 0 + 0 + 0 + 0 + 0 = - 6$

    Câu 5 :

    Bỏ ngoặc rồi tính: $\left( {52 - 69 + 17} \right) - \left( {52 + 17} \right)\;$ ta được kết quả là

    • A.

      $69$

    • B.

      $0$

    • C.

      $-69$

    • D.

      $52$

    Đáp án : C

    Phương pháp giải :

    + Ta sử dụng qui tắc phá ngoặc

    Khi bỏ dấu ngoặc có dấu “-“ đằng trước, ta phải đổi dấu tất cả các số hạng trong dấu ngoặc : dấu “+” chuyển thành dầu “-“ và dấu “-“ chuyển thành dấu “+”.

    Khi bỏ dấu ngoặc có dấu “+” đằng trước thì dấu các số hạng trong ngoặc vẫn được giữ nguyên.

    + Sử dụng qui tắc cộng số nguyên và tính chất giao hoán để thực hiện phép tính

    Lời giải chi tiết :

    Ta có: $(52 - 69 + 17) - (52 + 17) $

    $ = 52 - 69 + 17 - 52 - 17 $

    $ = (52 - 52) + (17 - 17) - 69 $

    $ = 0 + 0 - 69 $

    $ = - 69$

    Câu 6 :

    Tìm x biết: $17 - \left( {x + 84} \right) = 107$

    • A.

      $-174$

    • B.

      $6$

    • C.

      $-6$

    • D.

      $174$

    Đáp án : A

    Phương pháp giải :

    Ta có thể làm như sau:Bước 1: Tìm $x + 84$ bằng cách lấy số bị trừ trừ đi hiệuBước 2: Tìm $x$ bằng cách lấy tổng trừ số hạng đã biết

    Hoặc ta có thể phá ngoặc rồi rút gọn vế trái, sau đó thực hiện qui tắc chuyển vế để tìm \(x\)

    Lời giải chi tiết :

    Ta có $17 - \left( {x + 84} \right) = 107$

    \(\begin{array}{l}x + 84 = 17 - 107\\x + 84 = - \left( {107 - 17} \right)\\x + 84 = - 90\\x = - 90 - 84\\x = - \left( {90 + 84} \right)\\x = - 174\end{array}\)

    Vậy \(x = - 174.\)

    Câu 7 :

    Tìm $x$ biết: $44 - x - 16{\rm{ }} = - 60$

    • A.

      \(x = - 88\)

    • B.

      \(x = - 42\)

    • C.

      \(x = 42\)

    • D.

      \(x = 88\)

    Đáp án : D

    Phương pháp giải :

    Bước 1: Thu gọn vế tráiBước 2: Tìm x

    Lời giải chi tiết :

    Ta có $44 - x - 16{\rm{ }} = - 60$

    \(\begin{array}{l}\left( {44 - 16} \right) - x = - 60\\28 - x = - 60\\x = 28 - \left( { - 60} \right)\\x = 28 + 60\\x = 88\end{array}\)

    Vậy \(x = 88.\)

    Câu 8 :

    Chọn câu trả lời đúng:

    • A.

      \(\left( { - 9} \right) + 19 = 19 + \left( { - 9} \right)\) 

    • B.

      \(\left( { - 9} \right) + 19 > 19 + \left( { - 9} \right)\)

    • C.

      \(\left( { - 9} \right) + 19 < 19 + \left( { - 9} \right)\)

    • D.

      \(\left( { - 9} \right) + \left( { - 9} \right) = 19 + 19\)

    Đáp án : A

    Phương pháp giải :

    Áp dụng quy tắc cộng hai số nguyên cùng dấu, khác dấu.

    Lời giải chi tiết :

    Vì \(\left( { - 9} \right) + 19 = 10;\,\;19 + \left( { - 9} \right) = 10\) nên \(\left( { - 9} \right) + 19 = 19 + \left( { - 9} \right)\).

    Do đó câu A đúng, câu B, C sai.

    Vì \(\left( { - 9} \right) + \left( { - 9} \right) = - 18;\,19 + 19 = 38;\, - 18 \ne 38\) nên câu D sai.

    Câu 9 :

    Tìm $x\; \in \;Z,$ biết: $8\;\, \vdots \;\,x$ và $15\,\; \vdots \;\,x$ .

    • A.

      $x\; = 1$

    • B.

      $x\; \in \;\left\{ { - 1;{\rm{ }}1} \right\}$ 

    • C.

      $x\; = - 1$

    • D.

      $x\; \in \;\left\{ { - 1;{\rm{ }}1;2;3} \right\}$

    Đáp án : B

    Phương pháp giải :

    Từ đề bài ta đưa về tìm ước chung của 8 và 15

    Tìm ước của 8; tìm ước của 15 từ đó suy ra ước chung của 8 và 15

    Lời giải chi tiết :

    Vì $8\,\; \vdots \;\,x$ và $15\;\, \vdots \;\,x\;$ $ \Rightarrow \;x\; \in \;$ ƯC$\left( {8,15} \right)$ Ư$\left( 8 \right) = \left\{ { - 8; - 4; - 2; - 1;1;2;4;{\rm{8}}} \right\}$ Ư$\left( {15} \right) = \left\{ { - 15; - 5; - 3; - 1;1;3;5;15} \right\}$ Vậy: ƯC$\left( {8,15} \right) = \left\{ { - 1;{\rm{ }}1} \right\}$ Hay $x\; \in \;\left\{ { - 1;{\rm{ }}1} \right\}$

    Câu 10 :

    Thực hiện phép tính $455 - 5.\left[ {\left( { - 5} \right) + 4.\left( { - 8} \right)} \right]$ ta được kết quả là

    • A.

      Một số chia hết cho 10

    • B.

      Một số chẵn chia hết cho 3

    • C.

      Một số lẻ

    • D.

      Một số lẻ chia hết cho 5

    Đáp án : A

    Phương pháp giải :

    +Biểu thức có chứa phép tính nhân, chia, cộng, trừ thì ta thực hiện tính phép nhân, chia trước, thực hiện tính phép tính cộng, trừ sau+ Biểu thức có chứa dấu ngoặc thì ta thực hiện bỏ ngoặc theo thứ tự: $()\; \to \;[]\; \to \;\{ \} $

    Lời giải chi tiết :

    Ta có$\begin{array}{l}455 - 5.[( - 5) + 4.( - 8)]\\ = 455 - 5.( - 5 - 32)\\ = 455 - 5.[ - (5 + 32)]\\ = 455 - 5.( - 37)\\ = 455 + 185\\ = 640\end{array}$

    Nhận thấy \(640\, \vdots \,10\) nên chọn A.

    Câu 11 :

    Tính $\left( { - 9} \right).\left( { - 12} \right) - \left( { - 13} \right).6\;$

    • A.

      $186$

    • B.

      $164$

    • C.

      $30$

    • D.

      $168$

    Đáp án : A

    Phương pháp giải :

    Biểu thức có chứa phép tính nhân và phép tính trừ nên ta thực hiện tính phép nhân trước, thực hiện tính phép trừ sau.

    Lời giải chi tiết :

    Ta có $\left( { - 9} \right).\left( { - 12} \right) - \left( { - 13} \right).6\; = 108 - \left( { - 78} \right) = 108 + 78 = 186$

    Câu 12 :

    Thực hiện phép tính \( - 567 - \left( { - 113} \right) + \left( { - 69} \right) - \left( {113 - 567} \right)\) ta được kết quả là

    • A.

      \(69\)

    • B.

      \(-69\)

    • C.

      \(96\)

    • D.

      \(0\)

    Đáp án : B

    Phương pháp giải :

    Sử dụng quy tắc dấu ngoặc, quy tắc trừ hai số nguyên cùng dấu, khác dấu, tính chất giao hoán, tính chất kết hợp, cộng với số đối để tính giá trị của biểu thức.

    Lời giải chi tiết :

    \(\begin{array}{l} - 567 - \left( { - 113} \right) + \left( { - 69} \right) - \left( {113 - 567} \right)\\ = - 567 - \left( { - 113} \right) + \left( { - 69} \right) - 113 + 567\\ = \left( { - 567 + 567} \right) - \left( { - 113 + 113} \right) + \left( { - 69} \right)\\ = 0 - 0 + \left( { - 69} \right)\\ = - 69.\end{array}\)

    Câu 13 :

    Tìm $x,$ biết: $\left( {x - 12} \right).\left( {8 + x} \right) = 0$

    • A.

      \(x = 12\)

    • B.

      \(x = - 8\)

    • C.

      \(x = 12\) hoặc \(x = - 8\)

    • D.

      \(x = 0\)

    Đáp án : C

    Phương pháp giải :

    Ta sử dụng $A.{\rm{ }}B = 0$ thì $A = 0$ hoặc $B = 0$

    Lời giải chi tiết :

    Ta có $\left( {x - 12} \right).\left( {8 + x} \right) = 0$

    TH1:

     \(\begin{array}{l}x - 12 = 0\\x = 12\end{array}\)

    TH2:

    \(\begin{array}{l}8 + x = 0\\x = - 8\end{array}\)

    Vậy \(x = 12\); \(x = - 8.\)

    Câu 14 :

    Tính \( - 4.[12:{( - 2)^2} - 4.( - 3)] - {( - 12)^2}\) ta được kết quả là

    • A.

      \( - 144\)

    • B.

      \(144\)

    • C.

      \( - 204\)

    • D.

      \(204\)

    Đáp án : C

    Phương pháp giải :

    Ta thực hiện lũy thừa trước sau đó tính ngoặc tròn rồi đến ngoặc vuông

    Lời giải chi tiết :

    Ta có \( - 4.[12:{( - 2)^2} - 4.( - 3)] - {( - 12)^2}\)

    $\begin{array}{l} = - 4.[12:4 - ( - 12)] - 144 \\= - 4.(3 + 12) - 144 = - 4.15 - 144\\ = - 60 - 144 = - (60 + 144) = - 204\end{array}$

    Câu 15 :

    Cho  \(A = - 128.\left[ {\left( { - 25} \right) + 89} \right] + 128.\left( {89 - 125} \right)\) . Chọn câu đúng.

    • A.

      Giá trị của A là số có chữ số tận cùng là 0

    • B.

      Giá trị của A là số lẻ

    • C.

      Giá trị của A là số dương

    • D.

      Giá trị của A là số chia hết cho 3

    Đáp án : A

    Phương pháp giải :

    Sử dụng tính chất phân phối của phép nhân với phép cộng; tính chất giao hoán, tính chất kết hợp để tính giá trị của biểu thức.

    Lời giải chi tiết :

    \(\begin{array}{l}A = - 128.\left[ {\left( { - 25} \right) + 89} \right] + 128.\left( {89 - 125} \right)\\ = - 128.\left( { - 25} \right) - 128.89 + 128.89 + 128.\left( { - 125} \right)\\ = \left( { - 128.89 + 128.89} \right) - \left[ {128.\left( { - 25} \right) - 128.\left( { - 125} \right)} \right]\\ = 0 - 128.\left[ {\left( { - 25} \right) + 125} \right]\\ = - 128.100\\ = - 12800.\end{array}\)

    Vậy giá trị của A là số chẵn, số âm có chữ số tận cùng là 0 và không chia hết cho 3.

    Câu 16 :

    Cho \({x_1}\) là số nguyên thỏa mãn \({\left( {x + 3} \right)^3}:3 - 1 = - 10\) . Chọn câu đúng.

    • A.

      \({x_1} > - 4\)

    • B.

      \({x_1} > 0\)

    • C.

      \({x_1} = - 5\) 

    • D.

      \({x_1} < - 5\)

    Đáp án : D

    Phương pháp giải :

    Sử dụng quy tắc cộng hai số nguyên cùng dấu, khác dấu; quy tắc nhân hai số nguyên khác dấu; quy tắc chuyển vế và định nghĩa lũy thừa với số mũ tự nhiên.

    Lời giải chi tiết :

    \(\begin{array}{l}{\left( {x + 3} \right)^3}:3 - 1 = - 10\\{\left( {x + 3} \right)^3}:3= - 10 + 1\\{\left( {x + 3} \right)^3}:3= - 9\\{\left( {x + 3} \right)^3} = \left( { - 9} \right).3\\{\left( {x + 3} \right)^3} = - 27\\{\left( {x + 3} \right)^3} = {\left( { - 3} \right)^3}\\x + 3 = - 3\\x= - 3 - 3\\x= - 6.\end{array}\)

    Vậy \({x_1} = - 6 < - 5\).

    Câu 17 :

    Cho \(x \in \mathbb{Z}\) và $-5$ là bội của \(x + 2\) thì giá trị của x bằng:

    • A.

      \( - 1;\,1;\,5;\, - 5\)

    • B.

      \( \pm 3;\, \pm 7\)

    • C.

      \( - 1;\, - 3;\,3;\, - 7\)

    • D.

      \(7;\, - 7\)

    Đáp án : C

    Phương pháp giải :

    + Sử dụng khái niệm bội và ước của một số nguyên để tìm các ước của $-5$

    + Lập bảng giá trị để tìm x

    Lời giải chi tiết :

    Ta có: -5 là bội của \(x + 2\) suy ra \(x + 2\) là ước của -5.

    Mà \(Ư\left( { - 5} \right) = \left\{ { \pm 1;\, \pm 5} \right\}\) nên suy ra \(x + 2 \in \left\{ { \pm 1;\, \pm 5} \right\}\)

    Xét bảng:

    Trắc nghiệm Bài tập cuối chương III Toán 6 Kết nối tri thức 0 1

    Vậy \(x \in \left\{ { - 1;\,3;\, - 3;\, - 7} \right\}\) .

    Câu 18 :

    Khi \(x = - 12\) giá trị của biểu thức \(\left( {x - 8} \right)\left( {x + 17} \right)\) là:

    • A.

      \( - 100\)

    • B.

      \(100\)

    • C.

      \( - 96\)

    • D.

      Một kết quả khác

    Đáp án : A

    Phương pháp giải :

    Thay \(x = - 12\) vào biểu thức ta tính được giá trị của biểu thức.

    Lời giải chi tiết :

    Thay \(x = - 12\) vào biểu thức ta được:

    \(\begin{array}{l}\left( { - 12 - 8} \right)\left( { - 12 + 17} \right)\\ = \left( { - 20} \right).5\\ = - 100\end{array}\)

    Câu 19 :

    Cho x là số nguyên và \(x + 1\) là ước của 5 thì giá trị của x là:

    • A.

      \(0;\, - 2;\,\;4;\, - 6\)

    • B.

      \(0;\, - 2;\;\,4;\;\,6\)

    • C.

      \(0;\,\;1;\;\,3;\,\;6\)

    • D.

      \(2;\, - 4;\, - 6;\,\;7\)

    Đáp án : A

    Phương pháp giải :

    + Sử dụng khái niệm bội và ước của một số nguyên để tìm các ước của 5.

    + Lập bảng giá trị để tìm x.

    Lời giải chi tiết :

    Ta có: \(\left( {x + 1} \right) \in Ư\left( 5 \right) \) suy ra \( \left( {x + 1} \right) \in \left\{ { - 5;\, - 1;\;\,1;\,\;5} \right\}.\)

    Xét bảng:

    Trắc nghiệm Bài tập cuối chương III Toán 6 Kết nối tri thức 0 2

    Vậy \(x \in \left\{ {0;\,4;\, - 2;\, - 6} \right\}\) .

    Câu 20 :

    Chọn câu đúng nhất. Với \(a,b,c \in \mathbb{Z}\) :

    • A.

      \(a\left( {b - c} \right) - a\left( {b + d} \right) = - a\left( {c + d} \right)\)

    • B.

      \(a\left( {b + c} \right) - b\left( {a - c} \right) = \left( {a + b} \right)c.\)

    • C.

      A, B đều sai

    • D.

      A, B đều đúng

    Đáp án : D

    Phương pháp giải :

    Biến đổi vế trái sử dụng tính chất phân phối của phép nhân với phép cộng, tính chất kết hợp; quy tắc nhân hai số nguyên để rút gọn.

    Từ đó so sánh với vế phải ở các đáp án.

    Lời giải chi tiết :

    + Đáp án A: Xét \(a\left( {b - c} \right) - a\left( {b + d} \right) = - a\left( {c + d} \right)\), với \(a,b,c,d \in \mathbb{Z}\)

    \(\begin{array}{l}VT = a\left( {b - c} \right) - a\left( {b + d} \right)\\ = ab - ac - ab - ad\\ = \left( {ab - ab} \right) - \left( {ac + ad} \right)\\ = 0 - a\left( {c + d} \right)\\ = - a\left( {c + d} \right)\\ = VP\end{array}\)

    Vậy \(a\left( {b - c} \right) - a\left( {b + d} \right) = - a\left( {c + d} \right)\) với \(a,b,c,d \in \mathbb{Z}\) hay A đúng.

    + Đáp án B: Với \(a,\,b,\,c \in \mathbb{Z}\) xét \(a\left( {b + c} \right) - b\left( {a - c} \right) = \left( {a + b} \right)c.\)

    \(\begin{array}{l}VT = a\left( {b + c} \right) - b\left( {a - c} \right)\\\,\,\,\,\,\,\, = ab + ac - ba + bc\\\,\,\,\,\,\,\, = \left( {ab - ba} \right) + \left( {ac + bc} \right)\\\,\,\,\,\,\,\, = 0 + c\left( {a + b} \right)\\\,\,\,\,\,\,\, = c\left( {a + b} \right)\\VP = \left( {a + b} \right)c\\ \Rightarrow VT = VP\end{array}\)

    Vậy \(a\left( {b + c} \right) - b\left( {a - c} \right) = \left( {a + b} \right)c.\) Hay B đúng.

    Vậy cả A, B đều đúng

    Câu 21 :

    Tìm các số $x,{\rm{ }}y,{\rm{ }}z$ biết: $x + y = 11,{\rm{ }}y + z = 10,{\rm{ }}z + x = - 3$.

    • A.

      \(x = - 1;y = 12;z = - 2.\)

    • B.

      \(x = - 1;y = 11;z = - 2.\)

    • C.

      \(x = - 2;y = - 1;z = 12.\)

    • D.

      \(x = 12;y = - 1;z = - 2.\)

    Đáp án : A

    Phương pháp giải :

    + Cộng các dữ kiện đề bài cho để tính tổng \(x + y + z\)

    + Từ đó tính \(x;y;z\)

    Lời giải chi tiết :

    Ta có: $x + y = 11,{\rm{ }}y + z = 10,{\rm{ }}z + x = - 3$ nên

    \(\begin{array}{l}\left( {x + y} \right) + \left( {y + z} \right) + \left( {z + x} \right) = 11 + 10 + \left( { - 3} \right)\\ x + y + y + z + z + x = 21 + \left( { - 3} \right)\\ \left( {x + x} \right) + \left( {y + y} \right) + \left( {z + z} \right) = 18\\ 2x + 2y + 2z = 18\\ 2\left( {x + y + z} \right) = 18\\ x + y + z = 9\end{array}\)

    Vậy \(x + y + z = 9.\)+) $z = (x + y + z) - (x + y) = 9 - 11 = - 2$+)$x = (x + y + z) - (y + z) = 9 - 10 = - 1$+) $y = (x + y + z) - (x + z) = 9 - \left( { - 3} \right) = 12$Vậy \(x = - 1;y = 12;z = - 2.\)

    Câu 22 :

    Có bao nhiêu số nguyên n thỏa mãn \(\left( {2n - 1} \right) \vdots \left( {n + 1} \right)\) ?

    • A.

      \(1\)

    • B.

      \(2\) 

    • C.

      \(3\)

    • D.

      \(4\)

    Đáp án : D

    Phương pháp giải :

    + Biến đổi \(2n - 1\) thành tổng hai số nguyên trong đó một số hạng có chứa \(n + 1\) .

    + Sử dụng tính chất chia hết của một tổng, hiệu và định nghĩa bội và ước của một số nguyên

    + Lập bảng để tìm ra n

    Lời giải chi tiết :

    Ta có:

    \(2n - 1 = 2n + 2 - 3 = \left( {2n + 2} \right) - 3 = 2\left( {n + 1} \right) - 3\)

    Vì \(\left( {2n - 1} \right) \vdots \left( {n + 1} \right)\) nên \(\left[ {2\left( {n + 1} \right) - 3} \right] \vdots \left( {n + 1} \right)\) .

    Mà \(2\left( {n + 1} \right) \vdots \left( {n + 1} \right)\) , suy ra \( - 3 \vdots \left( {n + 1} \right) \Rightarrow n + 1 \in U\left( { - 3} \right) = \left\{ { \pm 1;\, \pm 3} \right\}\) .

    Ta có bảng sau:

    Trắc nghiệm Bài tập cuối chương III Toán 6 Kết nối tri thức 0 3

    Vậy \(n \in \left\{ { - 4;\, - 2;\,0;\,2} \right\}\)

    Do đó có 4 số nguyên \(n\) thỏa mãn đề bài.

    Câu 23 :

    Tìm tổng các số nguyên $n$ biết: \(\left( {n + 3} \right)\left( {n - 2} \right) < 0\) .

    • A.

      \( - 3\)

    • B.

      \( - 2\)

    • C.

      \( 0\)

    • D.

      \(4\)

    Đáp án : B

    Phương pháp giải :

    + Ta thấy tích hai số là một số âm khi hai số đó trái dấu.

    + Từ đó chia hai trường hợp:

    TH1: \(n + 3 > 0\) và \(n - 2 < 0\)

    TH2: \(n + 3 < 0\) và \(n - 2 > 0\)

    Từ các trường hợp ta tìm giá trị của n.

    Lời giải chi tiết :

    Vì \(\left( {n + 3} \right)\left( {n - 2} \right) < 0\) nên suy ra \(n + 3\) và \(n - 2\) là hai số trái dấu.

    TH1: \(\left\{ \begin{array}{l}n + 3 > 0\\n - 2 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n > 0 - 3\\n < 0 + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n > - 3\\n < 2\end{array} \right. \Leftrightarrow - 3 < n < 2 \Rightarrow n \in \left\{ { - 2;\, - 1;\;\,0;\;\,1} \right\}\) vì \(n \in Z.\)

    TH2: \(\left\{ \begin{array}{l}n + 3 < 0\\n - 2 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n < 0 - 3\\n > 0 + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n < - 3\\n > 2\end{array} \right.\) suy ra không có giá trị nào của n thỏa mãn.

    Vậy \(n \in \left\{ { - 2;\, - 1;\,\;0;\;\,1} \right\}\).

    Tổng các số nguyên thỏa mãn là \(\left( { - 2} \right) + \left( { - 1} \right) + 0 + 1 = - 2.\)

    Câu 24 :

    Tìm giá trị lớn nhất của biểu thức: \(C = - {\left( {x - 5} \right)^2} + 10\)

    • A.

      \( - 10\)

    • B.

      \(5\)

    • C.

      \(0\)

    • D.

      \(10\)

    Đáp án : D

    Phương pháp giải :

    Áp dụng tính chất \({A^2} \ge 0\) với mọi A và tính chất \(m - {A^2} \le m\) để tìm giá trị lớn nhất của biểu thức.

    Lời giải chi tiết :

    \(C = - {\left( {x - 5} \right)^2} + 10\)

    Ta có: \({\left( {x - 5} \right)^2} \ge 0,\,\forall x \in \mathbb{Z} \Rightarrow - {\left( {x - 5} \right)^2} \le 0,\;\,\forall x \in \mathbb{Z}\)\( \Rightarrow - {\left( {x - 5} \right)^2} + 10 \le 10,\,\;\forall x \in \mathbb{Z}\)

    Suy ra \(C \le 10\,\,\forall x \in \mathbb{Z}\) .

    \(C = 10\) khi \({\left( {x - 5} \right)^2} = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\)

    Vậy giá trị lớn nhất của C là 10 khi \(x = 5\) .

    Lời giải và đáp án

      Câu 1 :

      Cho các số sau: \(1280;\, - 291;\;\,43;\, - 52;\;\,28;\;\,1;\;\,0\) . Các số đã cho sắp xếp theo thứ tự giảm dần là:

      • A.

        \( - 291;\, - 52;\,\;0;\;\,1;\,\;28;\,\;43;\,\;1280\)

      • B.

        \(1280;\,\;43;\,\;28;\,\;1;\;\,0;\, - 52;\, - 291\)

      • C.

        \(0;\,\;1;\;\,28;\;\,43;\, - 52;\, - 291;\;\,1280\)

      • D.

        \(1280;\,\;43;\,\;28;\,\;1;\;\,0;\, - 291;\, - 52\)

      Câu 2 :

      Cho \(E = \left\{ {3;\, - 8;\,0} \right\}\) . Tập hợp F gồm các phần tử của E và các số đối của chúng là?­

      • A.

        \(F = \left\{ {3;\,8;\;\,0;\, - ­3} \right\}\)

      • B.

        \(F = \left\{ { - 3;\, - 8;\,\;0} \right\}\)

      • C.

        \(F = \left\{ {3;\, - 8;\,\;0;\, - 3} \right\}\;\)

      • D.

        \(F = \left\{ {3;\, - 8;\,\;0;\, - 3;\,\;8} \right\}\)

      Câu 3 :

      Cho \(x - 236\) là số đối của số 0 thì x là:

      • A.

        \( - 234\)

      • B.

        \(234\)

      • C.

        \(0\) 

      • D.

        \(236\)

      Câu 4 :

      Tính tổng của các số nguyên x, biết: $ - 7 < \;x \le {\rm{5}}.$

      • A.

        $6$

      • B.

        $0$

      • C.

        $-6$

      • D.

        $5$

      Câu 5 :

      Bỏ ngoặc rồi tính: $\left( {52 - 69 + 17} \right) - \left( {52 + 17} \right)\;$ ta được kết quả là

      • A.

        $69$

      • B.

        $0$

      • C.

        $-69$

      • D.

        $52$

      Câu 6 :

      Tìm x biết: $17 - \left( {x + 84} \right) = 107$

      • A.

        $-174$

      • B.

        $6$

      • C.

        $-6$

      • D.

        $174$

      Câu 7 :

      Tìm $x$ biết: $44 - x - 16{\rm{ }} = - 60$

      • A.

        \(x = - 88\)

      • B.

        \(x = - 42\)

      • C.

        \(x = 42\)

      • D.

        \(x = 88\)

      Câu 8 :

      Chọn câu trả lời đúng:

      • A.

        \(\left( { - 9} \right) + 19 = 19 + \left( { - 9} \right)\) 

      • B.

        \(\left( { - 9} \right) + 19 > 19 + \left( { - 9} \right)\)

      • C.

        \(\left( { - 9} \right) + 19 < 19 + \left( { - 9} \right)\)

      • D.

        \(\left( { - 9} \right) + \left( { - 9} \right) = 19 + 19\)

      Câu 9 :

      Tìm $x\; \in \;Z,$ biết: $8\;\, \vdots \;\,x$ và $15\,\; \vdots \;\,x$ .

      • A.

        $x\; = 1$

      • B.

        $x\; \in \;\left\{ { - 1;{\rm{ }}1} \right\}$ 

      • C.

        $x\; = - 1$

      • D.

        $x\; \in \;\left\{ { - 1;{\rm{ }}1;2;3} \right\}$

      Câu 10 :

      Thực hiện phép tính $455 - 5.\left[ {\left( { - 5} \right) + 4.\left( { - 8} \right)} \right]$ ta được kết quả là

      • A.

        Một số chia hết cho 10

      • B.

        Một số chẵn chia hết cho 3

      • C.

        Một số lẻ

      • D.

        Một số lẻ chia hết cho 5

      Câu 11 :

      Tính $\left( { - 9} \right).\left( { - 12} \right) - \left( { - 13} \right).6\;$

      • A.

        $186$

      • B.

        $164$

      • C.

        $30$

      • D.

        $168$

      Câu 12 :

      Thực hiện phép tính \( - 567 - \left( { - 113} \right) + \left( { - 69} \right) - \left( {113 - 567} \right)\) ta được kết quả là

      • A.

        \(69\)

      • B.

        \(-69\)

      • C.

        \(96\)

      • D.

        \(0\)

      Câu 13 :

      Tìm $x,$ biết: $\left( {x - 12} \right).\left( {8 + x} \right) = 0$

      • A.

        \(x = 12\)

      • B.

        \(x = - 8\)

      • C.

        \(x = 12\) hoặc \(x = - 8\)

      • D.

        \(x = 0\)

      Câu 14 :

      Tính \( - 4.[12:{( - 2)^2} - 4.( - 3)] - {( - 12)^2}\) ta được kết quả là

      • A.

        \( - 144\)

      • B.

        \(144\)

      • C.

        \( - 204\)

      • D.

        \(204\)

      Câu 15 :

      Cho  \(A = - 128.\left[ {\left( { - 25} \right) + 89} \right] + 128.\left( {89 - 125} \right)\) . Chọn câu đúng.

      • A.

        Giá trị của A là số có chữ số tận cùng là 0

      • B.

        Giá trị của A là số lẻ

      • C.

        Giá trị của A là số dương

      • D.

        Giá trị của A là số chia hết cho 3

      Câu 16 :

      Cho \({x_1}\) là số nguyên thỏa mãn \({\left( {x + 3} \right)^3}:3 - 1 = - 10\) . Chọn câu đúng.

      • A.

        \({x_1} > - 4\)

      • B.

        \({x_1} > 0\)

      • C.

        \({x_1} = - 5\) 

      • D.

        \({x_1} < - 5\)

      Câu 17 :

      Cho \(x \in \mathbb{Z}\) và $-5$ là bội của \(x + 2\) thì giá trị của x bằng:

      • A.

        \( - 1;\,1;\,5;\, - 5\)

      • B.

        \( \pm 3;\, \pm 7\)

      • C.

        \( - 1;\, - 3;\,3;\, - 7\)

      • D.

        \(7;\, - 7\)

      Câu 18 :

      Khi \(x = - 12\) giá trị của biểu thức \(\left( {x - 8} \right)\left( {x + 17} \right)\) là:

      • A.

        \( - 100\)

      • B.

        \(100\)

      • C.

        \( - 96\)

      • D.

        Một kết quả khác

      Câu 19 :

      Cho x là số nguyên và \(x + 1\) là ước của 5 thì giá trị của x là:

      • A.

        \(0;\, - 2;\,\;4;\, - 6\)

      • B.

        \(0;\, - 2;\;\,4;\;\,6\)

      • C.

        \(0;\,\;1;\;\,3;\,\;6\)

      • D.

        \(2;\, - 4;\, - 6;\,\;7\)

      Câu 20 :

      Chọn câu đúng nhất. Với \(a,b,c \in \mathbb{Z}\) :

      • A.

        \(a\left( {b - c} \right) - a\left( {b + d} \right) = - a\left( {c + d} \right)\)

      • B.

        \(a\left( {b + c} \right) - b\left( {a - c} \right) = \left( {a + b} \right)c.\)

      • C.

        A, B đều sai

      • D.

        A, B đều đúng

      Câu 21 :

      Tìm các số $x,{\rm{ }}y,{\rm{ }}z$ biết: $x + y = 11,{\rm{ }}y + z = 10,{\rm{ }}z + x = - 3$.

      • A.

        \(x = - 1;y = 12;z = - 2.\)

      • B.

        \(x = - 1;y = 11;z = - 2.\)

      • C.

        \(x = - 2;y = - 1;z = 12.\)

      • D.

        \(x = 12;y = - 1;z = - 2.\)

      Câu 22 :

      Có bao nhiêu số nguyên n thỏa mãn \(\left( {2n - 1} \right) \vdots \left( {n + 1} \right)\) ?

      • A.

        \(1\)

      • B.

        \(2\) 

      • C.

        \(3\)

      • D.

        \(4\)

      Câu 23 :

      Tìm tổng các số nguyên $n$ biết: \(\left( {n + 3} \right)\left( {n - 2} \right) < 0\) .

      • A.

        \( - 3\)

      • B.

        \( - 2\)

      • C.

        \( 0\)

      • D.

        \(4\)

      Câu 24 :

      Tìm giá trị lớn nhất của biểu thức: \(C = - {\left( {x - 5} \right)^2} + 10\)

      • A.

        \( - 10\)

      • B.

        \(5\)

      • C.

        \(0\)

      • D.

        \(10\)

      Câu 1 :

      Cho các số sau: \(1280;\, - 291;\;\,43;\, - 52;\;\,28;\;\,1;\;\,0\) . Các số đã cho sắp xếp theo thứ tự giảm dần là:

      • A.

        \( - 291;\, - 52;\,\;0;\;\,1;\,\;28;\,\;43;\,\;1280\)

      • B.

        \(1280;\,\;43;\,\;28;\,\;1;\;\,0;\, - 52;\, - 291\)

      • C.

        \(0;\,\;1;\;\,28;\;\,43;\, - 52;\, - 291;\;\,1280\)

      • D.

        \(1280;\,\;43;\,\;28;\,\;1;\;\,0;\, - 291;\, - 52\)

      Đáp án : B

      Phương pháp giải :

      Ta sử dụng các kiến thức:

      + Khi biểu diễn trên trục số, điểm a nằm bên trái điểm b thì số nguyên a nhỏ hơn số nguyên b

      + Mọi số nguyên dương đều lớn hơn số $0.$

      + Mọi số nguyên âm đều nhỏ hơn số $0.$

      + Mọi số nguyên âm đều nhỏ hơn bất kì số nguyên dương nào.

      + Từ đó sắp xếp các số theo thứ tự giảm dần.

      Lời giải chi tiết :

      Các số được xếp theo thứ tự giảm dần là: \(1280;\,\;43;\,\;28;\;\,1;\;\,0;\, - 52;\, - 291.\)

      Câu 2 :

      Cho \(E = \left\{ {3;\, - 8;\,0} \right\}\) . Tập hợp F gồm các phần tử của E và các số đối của chúng là?­

      • A.

        \(F = \left\{ {3;\,8;\;\,0;\, - ­3} \right\}\)

      • B.

        \(F = \left\{ { - 3;\, - 8;\,\;0} \right\}\)

      • C.

        \(F = \left\{ {3;\, - 8;\,\;0;\, - 3} \right\}\;\)

      • D.

        \(F = \left\{ {3;\, - 8;\,\;0;\, - 3;\,\;8} \right\}\)

      Đáp án : D

      Phương pháp giải :

      Sử dụng khái niệm tập hợp và khái niệm số đối của tập hợp để tìm ra tập hợp F.

      Số đối của a là –a; số đối của 0 là 0.

      Lời giải chi tiết :

      Tập hợp F gồm các phần tử của E và \(E = \left\{ {3; - \,8;\,0} \right\}\) nên $3; - 8;0$ là các phần tử của tập F

      Số đối của 3 là -3

      Số đối của -8 là 8

      Số đối của 0 là 0

      Do đó tập hợp F gồm các phần tử của E và các số đối của chúng là \(F = \left\{ {3;\, - 8;\;\,0;\, - 3;\;\,8} \right\}\)

      Câu 3 :

      Cho \(x - 236\) là số đối của số 0 thì x là:

      • A.

        \( - 234\)

      • B.

        \(234\)

      • C.

        \(0\) 

      • D.

        \(236\)

      Đáp án : D

      Phương pháp giải :

      + Số đối của 0 là 0.

      + Áp dụng quy tắc chuyển vế, quy tắc cộng hai số nguyên cùng dấu để tìm x.

      Lời giải chi tiết :

      Số đối của số 0 là 0.

      Vì \(x - 236\) là số đối của số 0 nên

      \(\begin{array}{l}x - 236 = 0\\x\;\;\;\;\;\;\;\;\; = 0 + 236\\x\;\;\;\;\;\;\;\;\; = 236.\end{array}\)

      Câu 4 :

      Tính tổng của các số nguyên x, biết: $ - 7 < \;x \le {\rm{5}}.$

      • A.

        $6$

      • B.

        $0$

      • C.

        $-6$

      • D.

        $5$

      Đáp án : C

      Phương pháp giải :

      Bước 1: Tìm các giá trị của x thỏa mãn $ - 7 < \;x \le {\rm{5}}.$ Bước 2: Tính tổng các giá trị của x vừa tìm được

      Lời giải chi tiết :

      Vì $ - 7 < \;x \le {\rm{5}}$ nên $x\; \in \;\left\{ { - 6; - 5; - 4; - 3; - 2; - 1;0;1;2;3;4;5} \right\}$ Tổng các số nguyên $x$ là: $( - 6) + ( - 5) + ( - 4) + ( - 3) + ( - 2) + ( - 1) + 0 + 1 + 2 + 3 + 4 + 5$$ = \left( { - 6} \right) + [( - 5) + 5\left] { + \left[ {\left( { - 4} \right) + 4} \right] + } \right[( - 3) + 3\left] + \right[( - 2) + 2\left] + \right[( - 1) + 1] + 0$$ = ( - 6) + 0 + 0 + 0 + 0 + 0 + 0 = - 6$

      Câu 5 :

      Bỏ ngoặc rồi tính: $\left( {52 - 69 + 17} \right) - \left( {52 + 17} \right)\;$ ta được kết quả là

      • A.

        $69$

      • B.

        $0$

      • C.

        $-69$

      • D.

        $52$

      Đáp án : C

      Phương pháp giải :

      + Ta sử dụng qui tắc phá ngoặc

      Khi bỏ dấu ngoặc có dấu “-“ đằng trước, ta phải đổi dấu tất cả các số hạng trong dấu ngoặc : dấu “+” chuyển thành dầu “-“ và dấu “-“ chuyển thành dấu “+”.

      Khi bỏ dấu ngoặc có dấu “+” đằng trước thì dấu các số hạng trong ngoặc vẫn được giữ nguyên.

      + Sử dụng qui tắc cộng số nguyên và tính chất giao hoán để thực hiện phép tính

      Lời giải chi tiết :

      Ta có: $(52 - 69 + 17) - (52 + 17) $

      $ = 52 - 69 + 17 - 52 - 17 $

      $ = (52 - 52) + (17 - 17) - 69 $

      $ = 0 + 0 - 69 $

      $ = - 69$

      Câu 6 :

      Tìm x biết: $17 - \left( {x + 84} \right) = 107$

      • A.

        $-174$

      • B.

        $6$

      • C.

        $-6$

      • D.

        $174$

      Đáp án : A

      Phương pháp giải :

      Ta có thể làm như sau:Bước 1: Tìm $x + 84$ bằng cách lấy số bị trừ trừ đi hiệuBước 2: Tìm $x$ bằng cách lấy tổng trừ số hạng đã biết

      Hoặc ta có thể phá ngoặc rồi rút gọn vế trái, sau đó thực hiện qui tắc chuyển vế để tìm \(x\)

      Lời giải chi tiết :

      Ta có $17 - \left( {x + 84} \right) = 107$

      \(\begin{array}{l}x + 84 = 17 - 107\\x + 84 = - \left( {107 - 17} \right)\\x + 84 = - 90\\x = - 90 - 84\\x = - \left( {90 + 84} \right)\\x = - 174\end{array}\)

      Vậy \(x = - 174.\)

      Câu 7 :

      Tìm $x$ biết: $44 - x - 16{\rm{ }} = - 60$

      • A.

        \(x = - 88\)

      • B.

        \(x = - 42\)

      • C.

        \(x = 42\)

      • D.

        \(x = 88\)

      Đáp án : D

      Phương pháp giải :

      Bước 1: Thu gọn vế tráiBước 2: Tìm x

      Lời giải chi tiết :

      Ta có $44 - x - 16{\rm{ }} = - 60$

      \(\begin{array}{l}\left( {44 - 16} \right) - x = - 60\\28 - x = - 60\\x = 28 - \left( { - 60} \right)\\x = 28 + 60\\x = 88\end{array}\)

      Vậy \(x = 88.\)

      Câu 8 :

      Chọn câu trả lời đúng:

      • A.

        \(\left( { - 9} \right) + 19 = 19 + \left( { - 9} \right)\) 

      • B.

        \(\left( { - 9} \right) + 19 > 19 + \left( { - 9} \right)\)

      • C.

        \(\left( { - 9} \right) + 19 < 19 + \left( { - 9} \right)\)

      • D.

        \(\left( { - 9} \right) + \left( { - 9} \right) = 19 + 19\)

      Đáp án : A

      Phương pháp giải :

      Áp dụng quy tắc cộng hai số nguyên cùng dấu, khác dấu.

      Lời giải chi tiết :

      Vì \(\left( { - 9} \right) + 19 = 10;\,\;19 + \left( { - 9} \right) = 10\) nên \(\left( { - 9} \right) + 19 = 19 + \left( { - 9} \right)\).

      Do đó câu A đúng, câu B, C sai.

      Vì \(\left( { - 9} \right) + \left( { - 9} \right) = - 18;\,19 + 19 = 38;\, - 18 \ne 38\) nên câu D sai.

      Câu 9 :

      Tìm $x\; \in \;Z,$ biết: $8\;\, \vdots \;\,x$ và $15\,\; \vdots \;\,x$ .

      • A.

        $x\; = 1$

      • B.

        $x\; \in \;\left\{ { - 1;{\rm{ }}1} \right\}$ 

      • C.

        $x\; = - 1$

      • D.

        $x\; \in \;\left\{ { - 1;{\rm{ }}1;2;3} \right\}$

      Đáp án : B

      Phương pháp giải :

      Từ đề bài ta đưa về tìm ước chung của 8 và 15

      Tìm ước của 8; tìm ước của 15 từ đó suy ra ước chung của 8 và 15

      Lời giải chi tiết :

      Vì $8\,\; \vdots \;\,x$ và $15\;\, \vdots \;\,x\;$ $ \Rightarrow \;x\; \in \;$ ƯC$\left( {8,15} \right)$ Ư$\left( 8 \right) = \left\{ { - 8; - 4; - 2; - 1;1;2;4;{\rm{8}}} \right\}$ Ư$\left( {15} \right) = \left\{ { - 15; - 5; - 3; - 1;1;3;5;15} \right\}$ Vậy: ƯC$\left( {8,15} \right) = \left\{ { - 1;{\rm{ }}1} \right\}$ Hay $x\; \in \;\left\{ { - 1;{\rm{ }}1} \right\}$

      Câu 10 :

      Thực hiện phép tính $455 - 5.\left[ {\left( { - 5} \right) + 4.\left( { - 8} \right)} \right]$ ta được kết quả là

      • A.

        Một số chia hết cho 10

      • B.

        Một số chẵn chia hết cho 3

      • C.

        Một số lẻ

      • D.

        Một số lẻ chia hết cho 5

      Đáp án : A

      Phương pháp giải :

      +Biểu thức có chứa phép tính nhân, chia, cộng, trừ thì ta thực hiện tính phép nhân, chia trước, thực hiện tính phép tính cộng, trừ sau+ Biểu thức có chứa dấu ngoặc thì ta thực hiện bỏ ngoặc theo thứ tự: $()\; \to \;[]\; \to \;\{ \} $

      Lời giải chi tiết :

      Ta có$\begin{array}{l}455 - 5.[( - 5) + 4.( - 8)]\\ = 455 - 5.( - 5 - 32)\\ = 455 - 5.[ - (5 + 32)]\\ = 455 - 5.( - 37)\\ = 455 + 185\\ = 640\end{array}$

      Nhận thấy \(640\, \vdots \,10\) nên chọn A.

      Câu 11 :

      Tính $\left( { - 9} \right).\left( { - 12} \right) - \left( { - 13} \right).6\;$

      • A.

        $186$

      • B.

        $164$

      • C.

        $30$

      • D.

        $168$

      Đáp án : A

      Phương pháp giải :

      Biểu thức có chứa phép tính nhân và phép tính trừ nên ta thực hiện tính phép nhân trước, thực hiện tính phép trừ sau.

      Lời giải chi tiết :

      Ta có $\left( { - 9} \right).\left( { - 12} \right) - \left( { - 13} \right).6\; = 108 - \left( { - 78} \right) = 108 + 78 = 186$

      Câu 12 :

      Thực hiện phép tính \( - 567 - \left( { - 113} \right) + \left( { - 69} \right) - \left( {113 - 567} \right)\) ta được kết quả là

      • A.

        \(69\)

      • B.

        \(-69\)

      • C.

        \(96\)

      • D.

        \(0\)

      Đáp án : B

      Phương pháp giải :

      Sử dụng quy tắc dấu ngoặc, quy tắc trừ hai số nguyên cùng dấu, khác dấu, tính chất giao hoán, tính chất kết hợp, cộng với số đối để tính giá trị của biểu thức.

      Lời giải chi tiết :

      \(\begin{array}{l} - 567 - \left( { - 113} \right) + \left( { - 69} \right) - \left( {113 - 567} \right)\\ = - 567 - \left( { - 113} \right) + \left( { - 69} \right) - 113 + 567\\ = \left( { - 567 + 567} \right) - \left( { - 113 + 113} \right) + \left( { - 69} \right)\\ = 0 - 0 + \left( { - 69} \right)\\ = - 69.\end{array}\)

      Câu 13 :

      Tìm $x,$ biết: $\left( {x - 12} \right).\left( {8 + x} \right) = 0$

      • A.

        \(x = 12\)

      • B.

        \(x = - 8\)

      • C.

        \(x = 12\) hoặc \(x = - 8\)

      • D.

        \(x = 0\)

      Đáp án : C

      Phương pháp giải :

      Ta sử dụng $A.{\rm{ }}B = 0$ thì $A = 0$ hoặc $B = 0$

      Lời giải chi tiết :

      Ta có $\left( {x - 12} \right).\left( {8 + x} \right) = 0$

      TH1:

       \(\begin{array}{l}x - 12 = 0\\x = 12\end{array}\)

      TH2:

      \(\begin{array}{l}8 + x = 0\\x = - 8\end{array}\)

      Vậy \(x = 12\); \(x = - 8.\)

      Câu 14 :

      Tính \( - 4.[12:{( - 2)^2} - 4.( - 3)] - {( - 12)^2}\) ta được kết quả là

      • A.

        \( - 144\)

      • B.

        \(144\)

      • C.

        \( - 204\)

      • D.

        \(204\)

      Đáp án : C

      Phương pháp giải :

      Ta thực hiện lũy thừa trước sau đó tính ngoặc tròn rồi đến ngoặc vuông

      Lời giải chi tiết :

      Ta có \( - 4.[12:{( - 2)^2} - 4.( - 3)] - {( - 12)^2}\)

      $\begin{array}{l} = - 4.[12:4 - ( - 12)] - 144 \\= - 4.(3 + 12) - 144 = - 4.15 - 144\\ = - 60 - 144 = - (60 + 144) = - 204\end{array}$

      Câu 15 :

      Cho  \(A = - 128.\left[ {\left( { - 25} \right) + 89} \right] + 128.\left( {89 - 125} \right)\) . Chọn câu đúng.

      • A.

        Giá trị của A là số có chữ số tận cùng là 0

      • B.

        Giá trị của A là số lẻ

      • C.

        Giá trị của A là số dương

      • D.

        Giá trị của A là số chia hết cho 3

      Đáp án : A

      Phương pháp giải :

      Sử dụng tính chất phân phối của phép nhân với phép cộng; tính chất giao hoán, tính chất kết hợp để tính giá trị của biểu thức.

      Lời giải chi tiết :

      \(\begin{array}{l}A = - 128.\left[ {\left( { - 25} \right) + 89} \right] + 128.\left( {89 - 125} \right)\\ = - 128.\left( { - 25} \right) - 128.89 + 128.89 + 128.\left( { - 125} \right)\\ = \left( { - 128.89 + 128.89} \right) - \left[ {128.\left( { - 25} \right) - 128.\left( { - 125} \right)} \right]\\ = 0 - 128.\left[ {\left( { - 25} \right) + 125} \right]\\ = - 128.100\\ = - 12800.\end{array}\)

      Vậy giá trị của A là số chẵn, số âm có chữ số tận cùng là 0 và không chia hết cho 3.

      Câu 16 :

      Cho \({x_1}\) là số nguyên thỏa mãn \({\left( {x + 3} \right)^3}:3 - 1 = - 10\) . Chọn câu đúng.

      • A.

        \({x_1} > - 4\)

      • B.

        \({x_1} > 0\)

      • C.

        \({x_1} = - 5\) 

      • D.

        \({x_1} < - 5\)

      Đáp án : D

      Phương pháp giải :

      Sử dụng quy tắc cộng hai số nguyên cùng dấu, khác dấu; quy tắc nhân hai số nguyên khác dấu; quy tắc chuyển vế và định nghĩa lũy thừa với số mũ tự nhiên.

      Lời giải chi tiết :

      \(\begin{array}{l}{\left( {x + 3} \right)^3}:3 - 1 = - 10\\{\left( {x + 3} \right)^3}:3= - 10 + 1\\{\left( {x + 3} \right)^3}:3= - 9\\{\left( {x + 3} \right)^3} = \left( { - 9} \right).3\\{\left( {x + 3} \right)^3} = - 27\\{\left( {x + 3} \right)^3} = {\left( { - 3} \right)^3}\\x + 3 = - 3\\x= - 3 - 3\\x= - 6.\end{array}\)

      Vậy \({x_1} = - 6 < - 5\).

      Câu 17 :

      Cho \(x \in \mathbb{Z}\) và $-5$ là bội của \(x + 2\) thì giá trị của x bằng:

      • A.

        \( - 1;\,1;\,5;\, - 5\)

      • B.

        \( \pm 3;\, \pm 7\)

      • C.

        \( - 1;\, - 3;\,3;\, - 7\)

      • D.

        \(7;\, - 7\)

      Đáp án : C

      Phương pháp giải :

      + Sử dụng khái niệm bội và ước của một số nguyên để tìm các ước của $-5$

      + Lập bảng giá trị để tìm x

      Lời giải chi tiết :

      Ta có: -5 là bội của \(x + 2\) suy ra \(x + 2\) là ước của -5.

      Mà \(Ư\left( { - 5} \right) = \left\{ { \pm 1;\, \pm 5} \right\}\) nên suy ra \(x + 2 \in \left\{ { \pm 1;\, \pm 5} \right\}\)

      Xét bảng:

      Trắc nghiệm Bài tập cuối chương III Toán 6 Kết nối tri thức 0 1

      Vậy \(x \in \left\{ { - 1;\,3;\, - 3;\, - 7} \right\}\) .

      Câu 18 :

      Khi \(x = - 12\) giá trị của biểu thức \(\left( {x - 8} \right)\left( {x + 17} \right)\) là:

      • A.

        \( - 100\)

      • B.

        \(100\)

      • C.

        \( - 96\)

      • D.

        Một kết quả khác

      Đáp án : A

      Phương pháp giải :

      Thay \(x = - 12\) vào biểu thức ta tính được giá trị của biểu thức.

      Lời giải chi tiết :

      Thay \(x = - 12\) vào biểu thức ta được:

      \(\begin{array}{l}\left( { - 12 - 8} \right)\left( { - 12 + 17} \right)\\ = \left( { - 20} \right).5\\ = - 100\end{array}\)

      Câu 19 :

      Cho x là số nguyên và \(x + 1\) là ước của 5 thì giá trị của x là:

      • A.

        \(0;\, - 2;\,\;4;\, - 6\)

      • B.

        \(0;\, - 2;\;\,4;\;\,6\)

      • C.

        \(0;\,\;1;\;\,3;\,\;6\)

      • D.

        \(2;\, - 4;\, - 6;\,\;7\)

      Đáp án : A

      Phương pháp giải :

      + Sử dụng khái niệm bội và ước của một số nguyên để tìm các ước của 5.

      + Lập bảng giá trị để tìm x.

      Lời giải chi tiết :

      Ta có: \(\left( {x + 1} \right) \in Ư\left( 5 \right) \) suy ra \( \left( {x + 1} \right) \in \left\{ { - 5;\, - 1;\;\,1;\,\;5} \right\}.\)

      Xét bảng:

      Trắc nghiệm Bài tập cuối chương III Toán 6 Kết nối tri thức 0 2

      Vậy \(x \in \left\{ {0;\,4;\, - 2;\, - 6} \right\}\) .

      Câu 20 :

      Chọn câu đúng nhất. Với \(a,b,c \in \mathbb{Z}\) :

      • A.

        \(a\left( {b - c} \right) - a\left( {b + d} \right) = - a\left( {c + d} \right)\)

      • B.

        \(a\left( {b + c} \right) - b\left( {a - c} \right) = \left( {a + b} \right)c.\)

      • C.

        A, B đều sai

      • D.

        A, B đều đúng

      Đáp án : D

      Phương pháp giải :

      Biến đổi vế trái sử dụng tính chất phân phối của phép nhân với phép cộng, tính chất kết hợp; quy tắc nhân hai số nguyên để rút gọn.

      Từ đó so sánh với vế phải ở các đáp án.

      Lời giải chi tiết :

      + Đáp án A: Xét \(a\left( {b - c} \right) - a\left( {b + d} \right) = - a\left( {c + d} \right)\), với \(a,b,c,d \in \mathbb{Z}\)

      \(\begin{array}{l}VT = a\left( {b - c} \right) - a\left( {b + d} \right)\\ = ab - ac - ab - ad\\ = \left( {ab - ab} \right) - \left( {ac + ad} \right)\\ = 0 - a\left( {c + d} \right)\\ = - a\left( {c + d} \right)\\ = VP\end{array}\)

      Vậy \(a\left( {b - c} \right) - a\left( {b + d} \right) = - a\left( {c + d} \right)\) với \(a,b,c,d \in \mathbb{Z}\) hay A đúng.

      + Đáp án B: Với \(a,\,b,\,c \in \mathbb{Z}\) xét \(a\left( {b + c} \right) - b\left( {a - c} \right) = \left( {a + b} \right)c.\)

      \(\begin{array}{l}VT = a\left( {b + c} \right) - b\left( {a - c} \right)\\\,\,\,\,\,\,\, = ab + ac - ba + bc\\\,\,\,\,\,\,\, = \left( {ab - ba} \right) + \left( {ac + bc} \right)\\\,\,\,\,\,\,\, = 0 + c\left( {a + b} \right)\\\,\,\,\,\,\,\, = c\left( {a + b} \right)\\VP = \left( {a + b} \right)c\\ \Rightarrow VT = VP\end{array}\)

      Vậy \(a\left( {b + c} \right) - b\left( {a - c} \right) = \left( {a + b} \right)c.\) Hay B đúng.

      Vậy cả A, B đều đúng

      Câu 21 :

      Tìm các số $x,{\rm{ }}y,{\rm{ }}z$ biết: $x + y = 11,{\rm{ }}y + z = 10,{\rm{ }}z + x = - 3$.

      • A.

        \(x = - 1;y = 12;z = - 2.\)

      • B.

        \(x = - 1;y = 11;z = - 2.\)

      • C.

        \(x = - 2;y = - 1;z = 12.\)

      • D.

        \(x = 12;y = - 1;z = - 2.\)

      Đáp án : A

      Phương pháp giải :

      + Cộng các dữ kiện đề bài cho để tính tổng \(x + y + z\)

      + Từ đó tính \(x;y;z\)

      Lời giải chi tiết :

      Ta có: $x + y = 11,{\rm{ }}y + z = 10,{\rm{ }}z + x = - 3$ nên

      \(\begin{array}{l}\left( {x + y} \right) + \left( {y + z} \right) + \left( {z + x} \right) = 11 + 10 + \left( { - 3} \right)\\ x + y + y + z + z + x = 21 + \left( { - 3} \right)\\ \left( {x + x} \right) + \left( {y + y} \right) + \left( {z + z} \right) = 18\\ 2x + 2y + 2z = 18\\ 2\left( {x + y + z} \right) = 18\\ x + y + z = 9\end{array}\)

      Vậy \(x + y + z = 9.\)+) $z = (x + y + z) - (x + y) = 9 - 11 = - 2$+)$x = (x + y + z) - (y + z) = 9 - 10 = - 1$+) $y = (x + y + z) - (x + z) = 9 - \left( { - 3} \right) = 12$Vậy \(x = - 1;y = 12;z = - 2.\)

      Câu 22 :

      Có bao nhiêu số nguyên n thỏa mãn \(\left( {2n - 1} \right) \vdots \left( {n + 1} \right)\) ?

      • A.

        \(1\)

      • B.

        \(2\) 

      • C.

        \(3\)

      • D.

        \(4\)

      Đáp án : D

      Phương pháp giải :

      + Biến đổi \(2n - 1\) thành tổng hai số nguyên trong đó một số hạng có chứa \(n + 1\) .

      + Sử dụng tính chất chia hết của một tổng, hiệu và định nghĩa bội và ước của một số nguyên

      + Lập bảng để tìm ra n

      Lời giải chi tiết :

      Ta có:

      \(2n - 1 = 2n + 2 - 3 = \left( {2n + 2} \right) - 3 = 2\left( {n + 1} \right) - 3\)

      Vì \(\left( {2n - 1} \right) \vdots \left( {n + 1} \right)\) nên \(\left[ {2\left( {n + 1} \right) - 3} \right] \vdots \left( {n + 1} \right)\) .

      Mà \(2\left( {n + 1} \right) \vdots \left( {n + 1} \right)\) , suy ra \( - 3 \vdots \left( {n + 1} \right) \Rightarrow n + 1 \in U\left( { - 3} \right) = \left\{ { \pm 1;\, \pm 3} \right\}\) .

      Ta có bảng sau:

      Trắc nghiệm Bài tập cuối chương III Toán 6 Kết nối tri thức 0 3

      Vậy \(n \in \left\{ { - 4;\, - 2;\,0;\,2} \right\}\)

      Do đó có 4 số nguyên \(n\) thỏa mãn đề bài.

      Câu 23 :

      Tìm tổng các số nguyên $n$ biết: \(\left( {n + 3} \right)\left( {n - 2} \right) < 0\) .

      • A.

        \( - 3\)

      • B.

        \( - 2\)

      • C.

        \( 0\)

      • D.

        \(4\)

      Đáp án : B

      Phương pháp giải :

      + Ta thấy tích hai số là một số âm khi hai số đó trái dấu.

      + Từ đó chia hai trường hợp:

      TH1: \(n + 3 > 0\) và \(n - 2 < 0\)

      TH2: \(n + 3 < 0\) và \(n - 2 > 0\)

      Từ các trường hợp ta tìm giá trị của n.

      Lời giải chi tiết :

      Vì \(\left( {n + 3} \right)\left( {n - 2} \right) < 0\) nên suy ra \(n + 3\) và \(n - 2\) là hai số trái dấu.

      TH1: \(\left\{ \begin{array}{l}n + 3 > 0\\n - 2 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n > 0 - 3\\n < 0 + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n > - 3\\n < 2\end{array} \right. \Leftrightarrow - 3 < n < 2 \Rightarrow n \in \left\{ { - 2;\, - 1;\;\,0;\;\,1} \right\}\) vì \(n \in Z.\)

      TH2: \(\left\{ \begin{array}{l}n + 3 < 0\\n - 2 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n < 0 - 3\\n > 0 + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n < - 3\\n > 2\end{array} \right.\) suy ra không có giá trị nào của n thỏa mãn.

      Vậy \(n \in \left\{ { - 2;\, - 1;\,\;0;\;\,1} \right\}\).

      Tổng các số nguyên thỏa mãn là \(\left( { - 2} \right) + \left( { - 1} \right) + 0 + 1 = - 2.\)

      Câu 24 :

      Tìm giá trị lớn nhất của biểu thức: \(C = - {\left( {x - 5} \right)^2} + 10\)

      • A.

        \( - 10\)

      • B.

        \(5\)

      • C.

        \(0\)

      • D.

        \(10\)

      Đáp án : D

      Phương pháp giải :

      Áp dụng tính chất \({A^2} \ge 0\) với mọi A và tính chất \(m - {A^2} \le m\) để tìm giá trị lớn nhất của biểu thức.

      Lời giải chi tiết :

      \(C = - {\left( {x - 5} \right)^2} + 10\)

      Ta có: \({\left( {x - 5} \right)^2} \ge 0,\,\forall x \in \mathbb{Z} \Rightarrow - {\left( {x - 5} \right)^2} \le 0,\;\,\forall x \in \mathbb{Z}\)\( \Rightarrow - {\left( {x - 5} \right)^2} + 10 \le 10,\,\;\forall x \in \mathbb{Z}\)

      Suy ra \(C \le 10\,\,\forall x \in \mathbb{Z}\) .

      \(C = 10\) khi \({\left( {x - 5} \right)^2} = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\)

      Vậy giá trị lớn nhất của C là 10 khi \(x = 5\) .

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Trắc nghiệm Bài tập cuối chương III Toán 6 Kết nối tri thức – nội dung then chốt trong chuyên mục giải toán 6 trên nền tảng đề thi toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Trắc nghiệm Bài tập cuối chương III Toán 6 Kết nối tri thức: Tổng quan và Hướng dẫn

      Chương III Toán 6 Kết nối tri thức tập trung vào các kiến thức về phân số, số thập phân và các phép toán liên quan. Việc nắm vững kiến thức này là nền tảng quan trọng cho các chương học tiếp theo. Bài tập cuối chương là cơ hội để học sinh củng cố lại những gì đã học và chuẩn bị cho các bài kiểm tra đánh giá.

      Các chủ đề chính trong chương III

      • Phân số: Khái niệm phân số, phân số bằng nhau, rút gọn phân số, quy đồng mẫu số.
      • Số thập phân: Khái niệm số thập phân, chuyển đổi phân số ra số thập phân và ngược lại, so sánh số thập phân.
      • Các phép toán trên phân số và số thập phân: Cộng, trừ, nhân, chia phân số và số thập phân.
      • Ứng dụng của phân số và số thập phân: Giải các bài toán thực tế liên quan đến phân số và số thập phân.

      Lợi ích của việc luyện tập trắc nghiệm

      Luyện tập trắc nghiệm mang lại nhiều lợi ích cho học sinh:

      • Kiểm tra kiến thức: Giúp học sinh tự đánh giá mức độ hiểu bài và xác định những kiến thức còn yếu.
      • Rèn luyện kỹ năng: Giúp học sinh rèn luyện kỹ năng giải bài tập nhanh và chính xác.
      • Làm quen với cấu trúc đề thi: Giúp học sinh làm quen với cấu trúc đề thi và các dạng bài tập thường gặp.
      • Tăng cường sự tự tin: Giúp học sinh tăng cường sự tự tin khi làm bài kiểm tra.

      Hướng dẫn làm bài trắc nghiệm hiệu quả

      1. Đọc kỹ đề bài: Đảm bảo hiểu rõ yêu cầu của đề bài trước khi bắt đầu giải.
      2. Phân tích các dữ kiện: Xác định các dữ kiện quan trọng trong đề bài và tìm cách liên hệ chúng với kiến thức đã học.
      3. Loại trừ các đáp án sai: Sử dụng phương pháp loại trừ để loại bỏ các đáp án sai và tăng khả năng chọn đúng.
      4. Kiểm tra lại đáp án: Sau khi chọn đáp án, hãy kiểm tra lại để đảm bảo tính chính xác.

      Các dạng bài tập trắc nghiệm thường gặp

      Trong bài tập cuối chương III, học sinh thường gặp các dạng bài tập trắc nghiệm sau:

      • Bài tập về phân số: Xác định phân số, so sánh phân số, rút gọn phân số, quy đồng mẫu số.
      • Bài tập về số thập phân: Chuyển đổi phân số ra số thập phân và ngược lại, so sánh số thập phân, làm tròn số thập phân.
      • Bài tập về các phép toán: Tính toán các phép cộng, trừ, nhân, chia phân số và số thập phân.
      • Bài tập ứng dụng: Giải các bài toán thực tế liên quan đến phân số và số thập phân.

      Ví dụ minh họa

      Câu hỏi: Phân số nào sau đây bằng phân số 2/3?

      A. 4/6 B. 3/4 C. 1/2 D. 5/7

      Giải thích: Phân số 4/6 có thể rút gọn thành 2/3 bằng cách chia cả tử số và mẫu số cho 2. Do đó, đáp án đúng là A.

      Lời khuyên

      Để học tốt môn Toán 6, các em cần:

      • Học thuộc các định nghĩa, quy tắc và công thức.
      • Làm đầy đủ các bài tập trong sách giáo khoa và sách bài tập.
      • Thường xuyên luyện tập trắc nghiệm để củng cố kiến thức.
      • Hỏi thầy cô giáo hoặc bạn bè khi gặp khó khăn.

      Kết luận

      Trắc nghiệm Bài tập cuối chương III Toán 6 Kết nối tri thức là một công cụ hữu ích giúp học sinh củng cố kiến thức và rèn luyện kỹ năng. Hãy tận dụng tối đa cơ hội này để đạt kết quả tốt nhất trong học tập.

      Tài liệu, đề thi và đáp án Toán 6