Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài tập cuối chương VI Toán 6 Kết nối tri thức

Trắc nghiệm Bài tập cuối chương VI Toán 6 Kết nối tri thức

Trắc nghiệm Bài tập cuối chương VI Toán 6 Kết nối tri thức

Chào mừng các em học sinh đến với chuyên mục luyện tập Trắc nghiệm Bài tập cuối chương VI Toán 6 Kết nối tri thức tại giaitoan.edu.vn. Đây là cơ hội tuyệt vời để các em ôn tập và củng cố kiến thức đã học trong chương.

Bộ đề trắc nghiệm này được thiết kế bám sát chương trình học, bao gồm nhiều dạng bài tập khác nhau, từ cơ bản đến nâng cao, giúp các em làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải nhanh, chính xác.

Đề bài

    Câu 1 :

    Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:

    • A.

      \(2,5\)

    • B.

      \(5,2\)

    • C.

      \(0,4\)

    • D.

      \(0,04\)

    Câu 2 :

    Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:

    • A.

      \(1,2\)

    • B.

      \(1,4\)

    • C.

      \(1,5\)

    • D.

      \(1,8\)

    Câu 3 :

    Số thập phân \(3,015\) được chuyển thành phân số là:

    • A.

      \(\dfrac{{3015}}{{10}}\) 

    • B.

      \(\dfrac{{3015}}{{100}}\)

    • C.

      \(\dfrac{{3015}}{{1000}}\) 

    • D.

      \(\dfrac{{3015}}{{10000}}\)

    Câu 4 :

    Phân số nghịch đảo của phân số: \(\dfrac{{ - 4}}{5}\) là:

    • A.

      \(\dfrac{4}{5}\) 

    • B.

      \(\dfrac{4}{{ - 5}}\)

    • C.

      \(\dfrac{5}{4}\) 

    • D.

      \(\dfrac{{ - 5}}{4}\)

    Câu 5 :

    Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:

    • A.

      $35$

    • B.

      $36$

    • C.

      $37$

    • D.

      $34$

    Câu 6 :

    Sắp xếp các phân số sau: \(\dfrac{1}{3};\dfrac{1}{2};\dfrac{3}{8};\dfrac{6}{7}\) theo thứ tự từ lớn đến bé.

    • A.

      \(\dfrac{1}{2};\dfrac{3}{8};\dfrac{1}{3};\dfrac{6}{7}\) 

    • B.

      \(\dfrac{6}{7};\dfrac{1}{2};\dfrac{3}{8};\dfrac{1}{3}\)

    • C.

      \(\dfrac{1}{2};\dfrac{1}{3};\dfrac{3}{8};\dfrac{6}{7}\)

    • D.

      $\dfrac{6}{7};\dfrac{3}{8};\dfrac{1}{3};\dfrac{1}{2}$

    Câu 7 :

    Rút gọn phân số \(\dfrac{{ - 24}}{{105}}\) đến tối giản ta được:

    • A.

      \(\dfrac{8}{{35}}\)

    • B.

      \(\dfrac{{ - 8}}{{35}}\)

    • C.

      \(\dfrac{{ - 12}}{{35}}\) 

    • D.

      \(\dfrac{{12}}{{35}}\)

    Câu 8 :

    Tìm một phân số ở giữa hai phân số \(\dfrac{1}{{10}}\) và \(\dfrac{2}{{10}}\).

    • A.

      \(\dfrac{3}{{10}}\)

    • B.

      \(\dfrac{{15}}{{10}}\)

    • C.

      \(\dfrac{{15}}{{100}}\) 

    • D.

      Không có phân số nào thỏa mãn.

    Câu 9 :

    Tính: \(3\dfrac{3}{5} + 1\dfrac{1}{6}\) .

    • A.

      \(4\dfrac{{23}}{{30}}\)

    • B.

      \(5\dfrac{{23}}{{30}}\)

    • C.

      \(2\dfrac{{23}}{{30}}\)

    • D.

      \(3\dfrac{{23}}{{30}}\)

    Câu 10 :

    Tính: \(\dfrac{6}{{15}} + \dfrac{{12}}{{ - 15}}\) là:

    • A.

      \(\dfrac{{18}}{{15}}\)

    • B.

      \(\dfrac{{ - 2}}{5}\)

    • C.

      \(\dfrac{1}{5}\)

    • D.

      \(\dfrac{{ - 1}}{5}\)

    Câu 11 :

    Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).

    • A.

      \(x = 4\)

    • B.

      \(x = - 4\)

    • C.

      \(x = 5\)

    • D.

      \(x = - 0,2\)

    Câu 12 :

    Cho hai biểu thức \(B = \left( {\dfrac{2}{3} - 1\dfrac{1}{2}} \right):\dfrac{4}{3} + \dfrac{1}{2}\) và \(C = \dfrac{9}{{23}}.\dfrac{5}{8} + \dfrac{9}{{23}}.\dfrac{3}{8} - \dfrac{9}{{23}}\). Chọn câu đúng.

    • A.

      \(B < 0;C = 0\)

    • B.

      \(B > 0;C = 0\)

    • C.

      \(B < 0;C < 0\)

    • D.

      \(B = 0;C < 0\)

    Câu 13 :

    Rút gọn phân số \(\dfrac{{1978.1979 + 1980.21 + 1958}}{{1980.1979 - 1978.1979}}\) ta được kết quả là

    • A.

      \(2000\)

    • B.

      \(1000\)

    • C.

      \(100\)

    • D.

      \(200\)

    Câu 14 :

    Cho \(x\) là giá trị thỏa mãn \(\dfrac{6}{7}x - \dfrac{1}{2} = 1\)

    • A.

      \(x = \dfrac{9}{{14}}\)

    • B.

      \(x = \dfrac{7}{4}\)

    • C.

      \(x = \dfrac{{ - 7}}{4}\)

    • D.

      \(x = \dfrac{9}{7}\)

    Câu 15 :

    Cho \({x_1}\) là giá trị thỏa mãn \(\dfrac{1}{2} - \left( {\dfrac{2}{3}x - \dfrac{1}{3}} \right) = \dfrac{{ - 2}}{3}\) và \({x_2}\) là giá trị thỏa mãn \(\,\dfrac{5}{6} - x = \dfrac{{ - 1}}{{12}} + \dfrac{4}{3}\) . Khi đó \({x_1} + {x_2}\) bằng

    • A.

      \(\dfrac{8}{3}\)

    • B.

      \(\dfrac{{ - 5}}{{12}}\)

    • C.

      \(\dfrac{9}{4}\)

    • D.

      \(\dfrac{{11}}{6}\)

    Câu 16 :

    Rút gọn phân số \(A = \dfrac{{7.9 + 14.27 + 21.36}}{{21.27 + 42.81 + 63.108}}\) đến tối giản ta được kết quả là phân số có mẫu số là

    • A.

      \(9\)

    • B.

      \(1\)

    • C.

      \(\dfrac{1}{9}\)

    • D.

      \(2\)

    Câu 17 :

    Cho \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\) và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\) . Chọn đáp án đúng.

    • A.

      \(A < - B\)

    • B.

      \(2A > B\)

    • C.

      \(A > B\)

    • D.

      \(A = B\)

    Câu 18 :

    Người ta mở vòi cho nước chảy vào đầy bể cần \(3\) giờ. Hỏi nếu mở vòi nước đó trong \(45\) phút thì được bao nhiêu phần của bể?

    • A.

      \(\dfrac{1}{3}\)

    • B.

      \(\dfrac{1}{4}\)

    • C.

      $\dfrac{2}{3}$

    • D.

      \(\dfrac{1}{2}\)

    Câu 19 :

    Lúc 7 giờ 5 phút, một người đi xe máy đi từ A và đến B lúc 8 giờ 45 phút. Biết quãng đường AB dài 65km. Tính vận tốc của người đi xe máy đó?

    • A.

      \(39\) km/h

    • B.

      \(40\) km/h

    • C.

      $42$ km/h

    • D.

      \(44\) km/h

    Câu 20 :

    Chọn câu đúng.

    • A.

      $\dfrac{{23}}{{99}} < \dfrac{{2323}}{{9999}} < \dfrac{{232323}}{{999999}} < \dfrac{{23232323}}{{99999999}}$

    • B.

      $\dfrac{{23}}{{99}} > \dfrac{{2323}}{{9999}} > \dfrac{{232323}}{{999999}} > \dfrac{{23232323}}{{99999999}}$

    • C.

      $\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} < \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$

    • D.

      $\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} = \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$

    Câu 21 :

    Không qui đồng, hãy so sánh hai phân số sau: \(\dfrac{{37}}{{67}}\) và \(\dfrac{{377}}{{677}}\).

    • A.

      \(\dfrac{{37}}{{67}} < \dfrac{{377}}{{677}}\)

    • B.

      \(\dfrac{{37}}{{67}} > \dfrac{{377}}{{677}}\)

    • C.

      \(\dfrac{{37}}{{67}} = \dfrac{{377}}{{677}}\)

    • D.

      \(\dfrac{{37}}{{67}} \ge \dfrac{{377}}{{677}}\)

    Câu 22 :

    Chọn câu đúng.

    • A.

      \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.2.3.4.5.6.7...60\)

    • B.

      \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.3.5.7...59\)

    • C.

      \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.3.5.7...60\)

    • D.

      \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 2.4.6.8...60\)

    Cho phân số \(A = \dfrac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\)

    Câu 23

    Có bao nhiêu giá trị nguyên của \(n\) để A có giá trị nguyên.

    • A.

      \(10\)

    • B.

      \(8\)

    • C.

      \(6\)

    • D.

      \(4\)

    Câu 24

    Tìm điều kiện của n để A là phân số tối giản.

    • A.

      \(n \ne 2k - 1\left( {k \in Z} \right)\)

    • B.

      \(n \ne 3k - 1\left( {k \in Z} \right)\)

    • C.

      \(n \ne 2k - 1\left( {k \in Z} \right)\) và \(n \ne 3k - 1\left( {k \in Z} \right)\)

    • D.

      \(n \ne 2k\left( {k \in Z} \right)\) và \(n \ne 3k\left( {k \in Z} \right)\)

    Lời giải và đáp án

    Câu 1 :

    Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:

    • A.

      \(2,5\)

    • B.

      \(5,2\)

    • C.

      \(0,4\)

    • D.

      \(0,04\)

    Đáp án : C

    Phương pháp giải :

    Chuyển phân số đó về phân số thập phân rồi viết dưới dạng số thập phân.

    Lời giải chi tiết :

    \(\dfrac{2}{5} = \dfrac{4}{{10}} = 0,4.\)

    Câu 2 :

    Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:

    • A.

      \(1,2\)

    • B.

      \(1,4\)

    • C.

      \(1,5\)

    • D.

      \(1,8\)

    Đáp án : B

    Phương pháp giải :

    Chuyển hỗn số đó về phân số thập phân, sau đó viết dưới dạng số thập phân.

    Lời giải chi tiết :

    \(1\dfrac{2}{5} = \dfrac{{1.5 + 2}}{5} = \dfrac{7}{5} = \dfrac{{14}}{{10}} = 1,4.\)

    Câu 3 :

    Số thập phân \(3,015\) được chuyển thành phân số là:

    • A.

      \(\dfrac{{3015}}{{10}}\) 

    • B.

      \(\dfrac{{3015}}{{100}}\)

    • C.

      \(\dfrac{{3015}}{{1000}}\) 

    • D.

      \(\dfrac{{3015}}{{10000}}\)

    Đáp án : C

    Phương pháp giải :

    Áp dụng qui tắc chuyển từ số thập phân về phân số.

    Lời giải chi tiết :

    \(3,015 = \dfrac{{3015}}{{1000}}\)

    Câu 4 :

    Phân số nghịch đảo của phân số: \(\dfrac{{ - 4}}{5}\) là:

    • A.

      \(\dfrac{4}{5}\) 

    • B.

      \(\dfrac{4}{{ - 5}}\)

    • C.

      \(\dfrac{5}{4}\) 

    • D.

      \(\dfrac{{ - 5}}{4}\)

    Đáp án : D

    Phương pháp giải :

    Hai phân số là nghịch đảo của nhau nếu tích của chúng bằng 1.

    Lời giải chi tiết :

    Phân số nghịch đảo của phân số: \(\dfrac{{ - 4}}{5}\) là \(\dfrac{{ - 5}}{4}\).

    Câu 5 :

    Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:

    • A.

      $35$

    • B.

      $36$

    • C.

      $37$

    • D.

      $34$

    Đáp án : B

    Phương pháp giải :

    Áp dụng qui tắc so sánh số thập phân để tìm được $x$

    Lời giải chi tiết :

    Ta có: \(35,67 < x < 36,05\) và \(x\) là số tự nhiên nên \(x = 36\).

    Câu 6 :

    Sắp xếp các phân số sau: \(\dfrac{1}{3};\dfrac{1}{2};\dfrac{3}{8};\dfrac{6}{7}\) theo thứ tự từ lớn đến bé.

    • A.

      \(\dfrac{1}{2};\dfrac{3}{8};\dfrac{1}{3};\dfrac{6}{7}\) 

    • B.

      \(\dfrac{6}{7};\dfrac{1}{2};\dfrac{3}{8};\dfrac{1}{3}\)

    • C.

      \(\dfrac{1}{2};\dfrac{1}{3};\dfrac{3}{8};\dfrac{6}{7}\)

    • D.

      $\dfrac{6}{7};\dfrac{3}{8};\dfrac{1}{3};\dfrac{1}{2}$

    Đáp án : B

    Phương pháp giải :

    + Quy đồng tử số các phân số ta được các phân số cùng tử, sau đó so sánh và sắp xếp theo thứ tự từ lớn đến bé.

    + Chú ý rằng với những phân số dương cùng tử số , phân số nào có mẫu bé hơn thì phân số đó lớn hơn.

    + Hoặc quy đồng mẫu số các phân số rồi so sánh.

    Lời giải chi tiết :

    Ta có: $\dfrac{1}{3} = \dfrac{6}{{18}};\;\;\dfrac{1}{2} = \dfrac{6}{{12}};\;\;\dfrac{3}{8} = \dfrac{6}{{16}}.$

    Vì:$\dfrac{6}{{18}} < \dfrac{6}{{16}} < \dfrac{6}{{12}} < \dfrac{6}{7} \Rightarrow \dfrac{6}{7} > \dfrac{1}{2} > \dfrac{3}{8} > \dfrac{1}{3}$.

    Vậy các phân số trên được sắp xếp theo thứ tự từ lớn đến bé là: \(\dfrac{6}{7};\;\dfrac{1}{2};\;\dfrac{3}{8};\;\dfrac{1}{3}.\)

    Câu 7 :

    Rút gọn phân số \(\dfrac{{ - 24}}{{105}}\) đến tối giản ta được:

    • A.

      \(\dfrac{8}{{35}}\)

    • B.

      \(\dfrac{{ - 8}}{{35}}\)

    • C.

      \(\dfrac{{ - 12}}{{35}}\) 

    • D.

      \(\dfrac{{12}}{{35}}\)

    Đáp án : B

    Phương pháp giải :

    Phân số tối giản là phân số mà tử và mẫu có ước chung lớn nhất bằng 1.

    Lời giải chi tiết :

    \(\dfrac{{ - 24}}{{105}} = \dfrac{{ - 24:3}}{{105:3}} = \dfrac{{ - 8}}{{35}}\)

    Câu 8 :

    Tìm một phân số ở giữa hai phân số \(\dfrac{1}{{10}}\) và \(\dfrac{2}{{10}}\).

    • A.

      \(\dfrac{3}{{10}}\)

    • B.

      \(\dfrac{{15}}{{10}}\)

    • C.

      \(\dfrac{{15}}{{100}}\) 

    • D.

      Không có phân số nào thỏa mãn.

    Đáp án : C

    Phương pháp giải :

    Chuyển hai phân số đã cho về số thập phân, sau đó ta áp dụng phương pháp so sánh số thập phân.

    Lời giải chi tiết :

    Ta có: \(\dfrac{1}{{10}} = 0,1;\;\;\,\dfrac{2}{{10}} = 0,2\)

    Vậy số cần tìm phải thỏa mãn: \(0,1 < x < 0,2\) nên trong các đáp án trên thì \(x\) chỉ có thể là \(0,15 = \dfrac{{15}}{{100}}.\)

    Câu 9 :

    Tính: \(3\dfrac{3}{5} + 1\dfrac{1}{6}\) .

    • A.

      \(4\dfrac{{23}}{{30}}\)

    • B.

      \(5\dfrac{{23}}{{30}}\)

    • C.

      \(2\dfrac{{23}}{{30}}\)

    • D.

      \(3\dfrac{{23}}{{30}}\)

    Đáp án : A

    Phương pháp giải :

    Áp dụng qui tắc cộng hai hỗn số hoặc đưa hỗn số về dạng phân số rồi cộng hai phân số.

    Lời giải chi tiết :

    \(3\dfrac{3}{5} + 1\dfrac{1}{6} = \left( {3 + 1} \right) + \left( {\dfrac{3}{5} + \dfrac{1}{6}} \right) = 4 + \dfrac{{23}}{{30}} = 4\dfrac{{23}}{{30}}.\)

    Câu 10 :

    Tính: \(\dfrac{6}{{15}} + \dfrac{{12}}{{ - 15}}\) là:

    • A.

      \(\dfrac{{18}}{{15}}\)

    • B.

      \(\dfrac{{ - 2}}{5}\)

    • C.

      \(\dfrac{1}{5}\)

    • D.

      \(\dfrac{{ - 1}}{5}\)

    Đáp án : B

    Phương pháp giải :

    Đưa về hai phân số cùng mẫu

    Áp dụng qui tắc: Muốn cộng hai phân số cùng mẫu ta cộng các tử và giữ nguyên mẫu.

    \(\dfrac{a}{m} + \dfrac{b}{m} = \dfrac{{a + b}}{m}\)

    Lời giải chi tiết :

    \(\dfrac{6}{{15}} + \dfrac{{12}}{{ - 15}} = \dfrac{6}{{15}} + \left( {\dfrac{{ - 12}}{{15}}} \right) = \dfrac{{6 + \left( { - 12} \right)}}{{15}} = \dfrac{{ - 6}}{{15}} = \dfrac{{ - 2}}{5}\)

    Câu 11 :

    Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).

    • A.

      \(x = 4\)

    • B.

      \(x = - 4\)

    • C.

      \(x = 5\)

    • D.

      \(x = - 0,2\)

    Đáp án : D

    Phương pháp giải :

    Chuyển phân số về số thập phân, áp dụng qui tắc nhân, chia số thập phân để tìm \(x\).

    Lời giải chi tiết :

    \(\begin{array}{l}2,4.x = \dfrac{{ - 6}}{5}.0,4\\2,4.x = - 1,2.0,4\\2,4.x = - 0,48\\x = - 0,48:2,4\\x = - 0,2.\end{array}\)

    Câu 12 :

    Cho hai biểu thức \(B = \left( {\dfrac{2}{3} - 1\dfrac{1}{2}} \right):\dfrac{4}{3} + \dfrac{1}{2}\) và \(C = \dfrac{9}{{23}}.\dfrac{5}{8} + \dfrac{9}{{23}}.\dfrac{3}{8} - \dfrac{9}{{23}}\). Chọn câu đúng.

    • A.

      \(B < 0;C = 0\)

    • B.

      \(B > 0;C = 0\)

    • C.

      \(B < 0;C < 0\)

    • D.

      \(B = 0;C < 0\)

    Đáp án : A

    Phương pháp giải :

    Áp dụng qui tắc tính giá trị của biểu thức:

    Ta thực hiện các phép tính theo thứ tự: Trong ngoặc \( \to \) nhân chia \( \to \) cộng trừ

    Lời giải chi tiết :

    \(\begin{array}{l}B = \,\,\left( {\dfrac{2}{3} - 1\dfrac{1}{2}} \right):\dfrac{4}{3} + \dfrac{1}{2}\\ = \left( {\dfrac{2}{3} - \dfrac{3}{2}} \right).\dfrac{3}{4} + \dfrac{1}{2}\\ = \dfrac{{ - 5}}{6}.\dfrac{3}{4} + \dfrac{1}{2}\\ = \dfrac{{ - 5}}{8} + \dfrac{1}{2}\\ = \dfrac{{ - 1}}{8}.\end{array}\)

    \(\begin{array}{l}C = \,\dfrac{9}{{23}}.\dfrac{5}{8} + \dfrac{9}{{23}}.\dfrac{3}{8} - \dfrac{9}{{23}}\\ = \dfrac{9}{{23}}.\left( {\dfrac{5}{8} + \dfrac{3}{8} - 1} \right)\\ = \dfrac{9}{{23}}.\left( {1 - 1} \right)\\ = \dfrac{9}{{23}}.0\\ = 0.\end{array}\)

    Vậy \(C = 0;B < 0\)

    Câu 13 :

    Rút gọn phân số \(\dfrac{{1978.1979 + 1980.21 + 1958}}{{1980.1979 - 1978.1979}}\) ta được kết quả là

    • A.

      \(2000\)

    • B.

      \(1000\)

    • C.

      \(100\)

    • D.

      \(200\)

    Đáp án : B

    Phương pháp giải :

    Phân tích cả tử và mẫu để xuất hiện thừa số chung, sau đó rút gọn đến phân số tối giản.

    Lời giải chi tiết :

    \(\begin{array}{l}\;\;\dfrac{{1978.1979 + 1980.21 + 1958}}{{1980.1979 - 1978.1979}}\\ = \dfrac{{1978.1979 + \left( {1979 + 1} \right).21 + 1958}}{{1979\left( {1980 - 1978} \right)}}\\ = \dfrac{{1978.1979 + 1979.21 + 21 + 1958}}{{1979.2}}\\ = \dfrac{{1978.1979 + 1979.21 + 1979}}{{1979.2}}\\ = \dfrac{{1979.\left( {1978 + 21 + 1} \right)}}{{1979.2}}\\ = \dfrac{{2000}}{2} = 1000.\end{array}\)

    Câu 14 :

    Cho \(x\) là giá trị thỏa mãn \(\dfrac{6}{7}x - \dfrac{1}{2} = 1\)

    • A.

      \(x = \dfrac{9}{{14}}\)

    • B.

      \(x = \dfrac{7}{4}\)

    • C.

      \(x = \dfrac{{ - 7}}{4}\)

    • D.

      \(x = \dfrac{9}{7}\)

    Đáp án : B

    Phương pháp giải :

    Áp dụng qui tắc chuyển vế đổi dấu để tìm x.

    Hoặc xác định \(\dfrac{6}{7}x\) là số bị trừ; \(\dfrac{1}{2}\) là số trừ và 1 là hiệu rồi áp dụng: số bị trừ bằng số trừ + hiệu

    Rồi áp dụng thừa số chưa biết bằng tích chia cho thừa số đã biết

    Lời giải chi tiết :

    \(\begin{array}{l}\,\,\,\,\,\dfrac{6}{7}x - \dfrac{1}{2} = 1\\\;\;\;\dfrac{6}{7}x\;\;\;\;\;\;\; = 1 + \dfrac{1}{2}\\\;\;\;\dfrac{6}{7}x\;\;\;\;\;\;\; = \dfrac{3}{2}\\\;\;\;\;\;x\;\;\;\;\;\;\; = \dfrac{3}{2}:\dfrac{6}{7}\\\;\;\;\;\;x\;\;\;\;\;\;\; = \dfrac{7}{4}.\end{array}\)

    Câu 15 :

    Cho \({x_1}\) là giá trị thỏa mãn \(\dfrac{1}{2} - \left( {\dfrac{2}{3}x - \dfrac{1}{3}} \right) = \dfrac{{ - 2}}{3}\) và \({x_2}\) là giá trị thỏa mãn \(\,\dfrac{5}{6} - x = \dfrac{{ - 1}}{{12}} + \dfrac{4}{3}\) . Khi đó \({x_1} + {x_2}\) bằng

    • A.

      \(\dfrac{8}{3}\)

    • B.

      \(\dfrac{{ - 5}}{{12}}\)

    • C.

      \(\dfrac{9}{4}\)

    • D.

      \(\dfrac{{11}}{6}\)

    Đáp án : D

    Phương pháp giải :

    Sử dụng qui tắc chuyển vế để tìm \({x_1};{x_2}\)

    Từ đó tính \({x_1} + {x_2}\)

    Lời giải chi tiết :

    \(\begin{array}{l} + )\,\,\dfrac{1}{2} - \left( {\dfrac{2}{3}x - \dfrac{1}{3}} \right) = \dfrac{{ - 2}}{3}\\\dfrac{2}{3}x - \dfrac{1}{3} = \dfrac{1}{2} - \left( {\dfrac{{ - 2}}{3}} \right)\\\dfrac{2}{3}x - \dfrac{1}{3} = \dfrac{7}{6}\\\dfrac{2}{3}x = \dfrac{7}{6} + \dfrac{1}{3}\\\dfrac{2}{3}x = \dfrac{3}{2}\\ x= \dfrac{3}{2}:\dfrac{2}{3}\\ x= \dfrac{9}{4}.\end{array}\)

    Nên \({x_1} = \dfrac{9}{4}\)

    \(\begin{array}{l} + )\,\,\dfrac{5}{6} - x = \dfrac{{ - 1}}{{12}} + \dfrac{4}{3}\\\dfrac{5}{6} - x = \dfrac{5}{4}\\x = \dfrac{5}{6} - \dfrac{5}{4}\\x = \dfrac{{ - 5}}{{12}}.\end{array}\)

    Nên \({x_2} = - \dfrac{5}{{12}}\)

    Từ đó \({x_1} + {x_2} = \dfrac{9}{4} + \left( { - \dfrac{5}{{12}}} \right) = \dfrac{{11}}{6}\)

    Câu 16 :

    Rút gọn phân số \(A = \dfrac{{7.9 + 14.27 + 21.36}}{{21.27 + 42.81 + 63.108}}\) đến tối giản ta được kết quả là phân số có mẫu số là

    • A.

      \(9\)

    • B.

      \(1\)

    • C.

      \(\dfrac{1}{9}\)

    • D.

      \(2\)

    Đáp án : A

    Phương pháp giải :

    Sử dụng tính chất phân phối của phép nhân đối với phép cộng để biến đổi tử số và mẫu số.

    Từ đó rút gọn phân số

    Lời giải chi tiết :

    Ta có

     \(\begin{array}{l}A = \dfrac{{7.9 + 14.27 + 21.36}}{{21.27 + 42.81 + 63.108}}\\ = \dfrac{{7.9\left( {1 + 2.3 + 3.4} \right)}}{{21.27\left( {1 + 2.3 + 3.4} \right)}}\\ = \dfrac{{7.9}}{{3.7.9.3}}\\ = \dfrac{1}{9}\end{array}\)

    Phân số này có mẫu số là 9.

    Câu 17 :

    Cho \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\) và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\) . Chọn đáp án đúng.

    • A.

      \(A < - B\)

    • B.

      \(2A > B\)

    • C.

      \(A > B\)

    • D.

      \(A = B\)

    Đáp án : D

    Phương pháp giải :

    Chuyển hỗn số về dạng phân số rồi rút gọn từng biểu thức A; B để so sánh.

    Lời giải chi tiết :

    Ta có \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\)\( = \dfrac{{\left( {\dfrac{{47}}{{15}} + \dfrac{3}{{15}}} \right):\dfrac{5}{2}}}{{\left( {\dfrac{{38}}{7} - \dfrac{9}{4}} \right):\dfrac{{267}}{{56}}}} = \dfrac{{\dfrac{{50}}{{15}}.\dfrac{2}{5}}}{{\left( {\dfrac{{152}}{{28}} - \dfrac{{63}}{{28}}} \right).\dfrac{{56}}{{267}}}}\)\( = \dfrac{{\dfrac{4}{3}}}{{\dfrac{{89}}{{28}}.\dfrac{{56}}{{267}}}} = \dfrac{{\dfrac{4}{3}}}{{\dfrac{2}{3}}} = 2\)

    Và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\)\( = \dfrac{{\dfrac{6}{5}:\left( {\dfrac{6}{5}.\dfrac{5}{4}} \right)}}{{\dfrac{8}{{25}} + \dfrac{2}{{25}}}} = \dfrac{{\dfrac{6}{5}:\dfrac{3}{2}}}{{\dfrac{{10}}{{25}}}} = \dfrac{{\dfrac{4}{5}}}{{\dfrac{2}{5}}} = 2\)

    Vậy \(A = B.\)

    Câu 18 :

    Người ta mở vòi cho nước chảy vào đầy bể cần \(3\) giờ. Hỏi nếu mở vòi nước đó trong \(45\) phút thì được bao nhiêu phần của bể?

    • A.

      \(\dfrac{1}{3}\)

    • B.

      \(\dfrac{1}{4}\)

    • C.

      $\dfrac{2}{3}$

    • D.

      \(\dfrac{1}{2}\)

    Đáp án : B

    Phương pháp giải :

    Tìm số phần bể vòi nước chảy được trong 1 giờ, rồi lấy kết quả đó nhân với thời gian mở vòi nước.

    Lời giải chi tiết :

    Đổi: \(45\)phút = \(\dfrac{3}{4}\) giờ

    Mỗi giờ vòi nước chảy được số phần bể là: \(1:3 = \dfrac{1}{3}\) (bể)

    Nếu mở vòi trong 45 phút thì được số phần bể là: \(\dfrac{3}{4}.\dfrac{1}{3} = \dfrac{1}{4}\)(bể)

    Câu 19 :

    Lúc 7 giờ 5 phút, một người đi xe máy đi từ A và đến B lúc 8 giờ 45 phút. Biết quãng đường AB dài 65km. Tính vận tốc của người đi xe máy đó?

    • A.

      \(39\) km/h

    • B.

      \(40\) km/h

    • C.

      $42$ km/h

    • D.

      \(44\) km/h

    Đáp án : A

    Phương pháp giải :

    Áp dụng công thức: vận tốc = quãng đường : thời gian.

    Lời giải chi tiết :

    Thời gian người đó đi hết quãng đường AB là: 8 giờ 45 phút – 7 giờ 5 phút = 1 giờ 40 phút

    Đổi 1 giờ 40 phút = \(\dfrac{5}{3}\) giờ.

    Vận tốc của người đi xe máy đó là: \(65:\dfrac{5}{3} = 39\left( {km/h} \right)\)

    Câu 20 :

    Chọn câu đúng.

    • A.

      $\dfrac{{23}}{{99}} < \dfrac{{2323}}{{9999}} < \dfrac{{232323}}{{999999}} < \dfrac{{23232323}}{{99999999}}$

    • B.

      $\dfrac{{23}}{{99}} > \dfrac{{2323}}{{9999}} > \dfrac{{232323}}{{999999}} > \dfrac{{23232323}}{{99999999}}$

    • C.

      $\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} < \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$

    • D.

      $\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} = \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$

    Đáp án : D

    Phương pháp giải :

    Áp dụng tính chất phân số để rút gọn các phấn số

    So sánh hai phân số cùng mẫu

    Lời giải chi tiết :

    Ta có:

    \(\dfrac{{2323}}{{9999}} = \dfrac{{2323:101}}{{9999:101}} = \dfrac{{23}}{{99}}\)

    \(\dfrac{{232323}}{{999999}} = \dfrac{{232323:10101}}{{999999:10101}} = \dfrac{{23}}{{99}}\)

    \(\dfrac{{23232323}}{{99999999}} = \dfrac{{23232323:1010101}}{{99999999:1010101}} = \dfrac{{23}}{{99}}\)

    Vậy $\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} = \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$

    Câu 21 :

    Không qui đồng, hãy so sánh hai phân số sau: \(\dfrac{{37}}{{67}}\) và \(\dfrac{{377}}{{677}}\).

    • A.

      \(\dfrac{{37}}{{67}} < \dfrac{{377}}{{677}}\)

    • B.

      \(\dfrac{{37}}{{67}} > \dfrac{{377}}{{677}}\)

    • C.

      \(\dfrac{{37}}{{67}} = \dfrac{{377}}{{677}}\)

    • D.

      \(\dfrac{{37}}{{67}} \ge \dfrac{{377}}{{677}}\)

    Đáp án : A

    Phương pháp giải :

    Sử dụng so sánh với phần bù của 1

    Lời giải chi tiết :

    Ta có:

    \(1 - \dfrac{{37}}{{67}} = \dfrac{{30}}{{67}};\;\;\;\;1 - \dfrac{{377}}{{677}} = \dfrac{{300}}{{677}}.\)

    Lại có: \(\dfrac{{30}}{{67}} = \dfrac{{300}}{{670}} > \dfrac{{300}}{{677}}\) nên \(\dfrac{{37}}{{67}} < \dfrac{{377}}{{677}}\) .

    Câu 22 :

    Chọn câu đúng.

    • A.

      \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.2.3.4.5.6.7...60\)

    • B.

      \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.3.5.7...59\)

    • C.

      \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.3.5.7...60\)

    • D.

      \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 2.4.6.8...60\)

    Đáp án : B

    Phương pháp giải :

    Sử dụng tính chất cơ bản của phân số: Nhân cả tử và mẫu của một phân số với cùng một số khác 0 thì ta được phân số mới bằng phân số đã cho.

    Lời giải chi tiết :

    Ta có \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = \dfrac{{31.32.33...60}}{{2.2.2....2}} = \dfrac{{\left( {31.32.33...60} \right)\left( {1.2.3...30} \right)}}{{{2^{30}}\left( {1.2.3...30} \right)}}\)

    \( = \dfrac{{1.2.3.4.5...60}}{{\left( {1.2} \right).\left( {2.2} \right).\left( {3.2} \right).\left( {4.2} \right)...\left( {30.2} \right)}}\)\( = \dfrac{{\left( {2.4.6...60} \right)\left( {1.3.5.7...59} \right)}}{{2.4.6...60}} = 1.3.5...59\)

    Cho phân số \(A = \dfrac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\)

    Câu 23

    Có bao nhiêu giá trị nguyên của \(n\) để A có giá trị nguyên.

    • A.

      \(10\)

    • B.

      \(8\)

    • C.

      \(6\)

    • D.

      \(4\)

    Đáp án: B

    Phương pháp giải :

    Ta biến đổi để đưa A về dạng \(A = m - \dfrac{a}{B}\) với m và a là số nguyên. Khi đó A có giá trị nguyên khi \(a\, \vdots \,B\) hay \(B \in Ư\left( a \right)\)

    Lời giải chi tiết :

    Ta có \(A = \dfrac{{n - 5}}{{n + 1}} = \dfrac{{n + 1 - 6}}{{n + 1}} = \dfrac{{n + 1}}{{n + 1}} - \dfrac{6}{{n + 1}} = 1 - \dfrac{6}{{n + 1}}\)

    Để A có giá trị nguyên thì \(6\, \vdots \,\left( {n + 1} \right) \Rightarrow \left( {n + 1} \right) \in Ư\left( 6 \right) = \left\{ { \pm 1; \pm 2; \pm 3; \pm 6} \right\}\)

    Ta có bảng sau

    Trắc nghiệm Bài tập cuối chương VI Toán 6 Kết nối tri thức 0 1

    Vậy có 8 giá trị của n thỏa mãn là \(0; - 2;1; - 3;2; - 4;5; - 7.\)

    Câu 24

    Tìm điều kiện của n để A là phân số tối giản.

    • A.

      \(n \ne 2k - 1\left( {k \in Z} \right)\)

    • B.

      \(n \ne 3k - 1\left( {k \in Z} \right)\)

    • C.

      \(n \ne 2k - 1\left( {k \in Z} \right)\) và \(n \ne 3k - 1\left( {k \in Z} \right)\)

    • D.

      \(n \ne 2k\left( {k \in Z} \right)\) và \(n \ne 3k\left( {k \in Z} \right)\)

    Đáp án: C

    Phương pháp giải :

    Ta sử dụng phân số \(\dfrac{A}{B}\) tối giản khi A và B là hai số nguyên tố cùng nhau nghĩa là \(\left( {A;B} \right) = 1\)

    Lời giải chi tiết :

    Để A tối giản thì (n-5) và (n+1) là hai số nguyên tố cùng nhau \( \Rightarrow \left( {n - 5;n + 1} \right) = 1\)

    \( \Leftrightarrow \left( {n + 1 - n + 5;n + 1} \right) = 1 \Leftrightarrow \left( {n + 1;6} \right) = 1\)

    Từ đó (n+1) không chia hết cho 2 và (n+1) không chia hết cho 3 

    Hay \(n \ne 2k - 1\) và \(n \ne 3k - 1\,\,\left( {k \in Z} \right)\)

    Lời giải và đáp án

      Câu 1 :

      Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:

      • A.

        \(2,5\)

      • B.

        \(5,2\)

      • C.

        \(0,4\)

      • D.

        \(0,04\)

      Câu 2 :

      Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:

      • A.

        \(1,2\)

      • B.

        \(1,4\)

      • C.

        \(1,5\)

      • D.

        \(1,8\)

      Câu 3 :

      Số thập phân \(3,015\) được chuyển thành phân số là:

      • A.

        \(\dfrac{{3015}}{{10}}\) 

      • B.

        \(\dfrac{{3015}}{{100}}\)

      • C.

        \(\dfrac{{3015}}{{1000}}\) 

      • D.

        \(\dfrac{{3015}}{{10000}}\)

      Câu 4 :

      Phân số nghịch đảo của phân số: \(\dfrac{{ - 4}}{5}\) là:

      • A.

        \(\dfrac{4}{5}\) 

      • B.

        \(\dfrac{4}{{ - 5}}\)

      • C.

        \(\dfrac{5}{4}\) 

      • D.

        \(\dfrac{{ - 5}}{4}\)

      Câu 5 :

      Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:

      • A.

        $35$

      • B.

        $36$

      • C.

        $37$

      • D.

        $34$

      Câu 6 :

      Sắp xếp các phân số sau: \(\dfrac{1}{3};\dfrac{1}{2};\dfrac{3}{8};\dfrac{6}{7}\) theo thứ tự từ lớn đến bé.

      • A.

        \(\dfrac{1}{2};\dfrac{3}{8};\dfrac{1}{3};\dfrac{6}{7}\) 

      • B.

        \(\dfrac{6}{7};\dfrac{1}{2};\dfrac{3}{8};\dfrac{1}{3}\)

      • C.

        \(\dfrac{1}{2};\dfrac{1}{3};\dfrac{3}{8};\dfrac{6}{7}\)

      • D.

        $\dfrac{6}{7};\dfrac{3}{8};\dfrac{1}{3};\dfrac{1}{2}$

      Câu 7 :

      Rút gọn phân số \(\dfrac{{ - 24}}{{105}}\) đến tối giản ta được:

      • A.

        \(\dfrac{8}{{35}}\)

      • B.

        \(\dfrac{{ - 8}}{{35}}\)

      • C.

        \(\dfrac{{ - 12}}{{35}}\) 

      • D.

        \(\dfrac{{12}}{{35}}\)

      Câu 8 :

      Tìm một phân số ở giữa hai phân số \(\dfrac{1}{{10}}\) và \(\dfrac{2}{{10}}\).

      • A.

        \(\dfrac{3}{{10}}\)

      • B.

        \(\dfrac{{15}}{{10}}\)

      • C.

        \(\dfrac{{15}}{{100}}\) 

      • D.

        Không có phân số nào thỏa mãn.

      Câu 9 :

      Tính: \(3\dfrac{3}{5} + 1\dfrac{1}{6}\) .

      • A.

        \(4\dfrac{{23}}{{30}}\)

      • B.

        \(5\dfrac{{23}}{{30}}\)

      • C.

        \(2\dfrac{{23}}{{30}}\)

      • D.

        \(3\dfrac{{23}}{{30}}\)

      Câu 10 :

      Tính: \(\dfrac{6}{{15}} + \dfrac{{12}}{{ - 15}}\) là:

      • A.

        \(\dfrac{{18}}{{15}}\)

      • B.

        \(\dfrac{{ - 2}}{5}\)

      • C.

        \(\dfrac{1}{5}\)

      • D.

        \(\dfrac{{ - 1}}{5}\)

      Câu 11 :

      Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).

      • A.

        \(x = 4\)

      • B.

        \(x = - 4\)

      • C.

        \(x = 5\)

      • D.

        \(x = - 0,2\)

      Câu 12 :

      Cho hai biểu thức \(B = \left( {\dfrac{2}{3} - 1\dfrac{1}{2}} \right):\dfrac{4}{3} + \dfrac{1}{2}\) và \(C = \dfrac{9}{{23}}.\dfrac{5}{8} + \dfrac{9}{{23}}.\dfrac{3}{8} - \dfrac{9}{{23}}\). Chọn câu đúng.

      • A.

        \(B < 0;C = 0\)

      • B.

        \(B > 0;C = 0\)

      • C.

        \(B < 0;C < 0\)

      • D.

        \(B = 0;C < 0\)

      Câu 13 :

      Rút gọn phân số \(\dfrac{{1978.1979 + 1980.21 + 1958}}{{1980.1979 - 1978.1979}}\) ta được kết quả là

      • A.

        \(2000\)

      • B.

        \(1000\)

      • C.

        \(100\)

      • D.

        \(200\)

      Câu 14 :

      Cho \(x\) là giá trị thỏa mãn \(\dfrac{6}{7}x - \dfrac{1}{2} = 1\)

      • A.

        \(x = \dfrac{9}{{14}}\)

      • B.

        \(x = \dfrac{7}{4}\)

      • C.

        \(x = \dfrac{{ - 7}}{4}\)

      • D.

        \(x = \dfrac{9}{7}\)

      Câu 15 :

      Cho \({x_1}\) là giá trị thỏa mãn \(\dfrac{1}{2} - \left( {\dfrac{2}{3}x - \dfrac{1}{3}} \right) = \dfrac{{ - 2}}{3}\) và \({x_2}\) là giá trị thỏa mãn \(\,\dfrac{5}{6} - x = \dfrac{{ - 1}}{{12}} + \dfrac{4}{3}\) . Khi đó \({x_1} + {x_2}\) bằng

      • A.

        \(\dfrac{8}{3}\)

      • B.

        \(\dfrac{{ - 5}}{{12}}\)

      • C.

        \(\dfrac{9}{4}\)

      • D.

        \(\dfrac{{11}}{6}\)

      Câu 16 :

      Rút gọn phân số \(A = \dfrac{{7.9 + 14.27 + 21.36}}{{21.27 + 42.81 + 63.108}}\) đến tối giản ta được kết quả là phân số có mẫu số là

      • A.

        \(9\)

      • B.

        \(1\)

      • C.

        \(\dfrac{1}{9}\)

      • D.

        \(2\)

      Câu 17 :

      Cho \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\) và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\) . Chọn đáp án đúng.

      • A.

        \(A < - B\)

      • B.

        \(2A > B\)

      • C.

        \(A > B\)

      • D.

        \(A = B\)

      Câu 18 :

      Người ta mở vòi cho nước chảy vào đầy bể cần \(3\) giờ. Hỏi nếu mở vòi nước đó trong \(45\) phút thì được bao nhiêu phần của bể?

      • A.

        \(\dfrac{1}{3}\)

      • B.

        \(\dfrac{1}{4}\)

      • C.

        $\dfrac{2}{3}$

      • D.

        \(\dfrac{1}{2}\)

      Câu 19 :

      Lúc 7 giờ 5 phút, một người đi xe máy đi từ A và đến B lúc 8 giờ 45 phút. Biết quãng đường AB dài 65km. Tính vận tốc của người đi xe máy đó?

      • A.

        \(39\) km/h

      • B.

        \(40\) km/h

      • C.

        $42$ km/h

      • D.

        \(44\) km/h

      Câu 20 :

      Chọn câu đúng.

      • A.

        $\dfrac{{23}}{{99}} < \dfrac{{2323}}{{9999}} < \dfrac{{232323}}{{999999}} < \dfrac{{23232323}}{{99999999}}$

      • B.

        $\dfrac{{23}}{{99}} > \dfrac{{2323}}{{9999}} > \dfrac{{232323}}{{999999}} > \dfrac{{23232323}}{{99999999}}$

      • C.

        $\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} < \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$

      • D.

        $\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} = \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$

      Câu 21 :

      Không qui đồng, hãy so sánh hai phân số sau: \(\dfrac{{37}}{{67}}\) và \(\dfrac{{377}}{{677}}\).

      • A.

        \(\dfrac{{37}}{{67}} < \dfrac{{377}}{{677}}\)

      • B.

        \(\dfrac{{37}}{{67}} > \dfrac{{377}}{{677}}\)

      • C.

        \(\dfrac{{37}}{{67}} = \dfrac{{377}}{{677}}\)

      • D.

        \(\dfrac{{37}}{{67}} \ge \dfrac{{377}}{{677}}\)

      Câu 22 :

      Chọn câu đúng.

      • A.

        \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.2.3.4.5.6.7...60\)

      • B.

        \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.3.5.7...59\)

      • C.

        \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.3.5.7...60\)

      • D.

        \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 2.4.6.8...60\)

      Cho phân số \(A = \dfrac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\)

      Câu 23

      Có bao nhiêu giá trị nguyên của \(n\) để A có giá trị nguyên.

      • A.

        \(10\)

      • B.

        \(8\)

      • C.

        \(6\)

      • D.

        \(4\)

      Câu 24

      Tìm điều kiện của n để A là phân số tối giản.

      • A.

        \(n \ne 2k - 1\left( {k \in Z} \right)\)

      • B.

        \(n \ne 3k - 1\left( {k \in Z} \right)\)

      • C.

        \(n \ne 2k - 1\left( {k \in Z} \right)\) và \(n \ne 3k - 1\left( {k \in Z} \right)\)

      • D.

        \(n \ne 2k\left( {k \in Z} \right)\) và \(n \ne 3k\left( {k \in Z} \right)\)

      Câu 1 :

      Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:

      • A.

        \(2,5\)

      • B.

        \(5,2\)

      • C.

        \(0,4\)

      • D.

        \(0,04\)

      Đáp án : C

      Phương pháp giải :

      Chuyển phân số đó về phân số thập phân rồi viết dưới dạng số thập phân.

      Lời giải chi tiết :

      \(\dfrac{2}{5} = \dfrac{4}{{10}} = 0,4.\)

      Câu 2 :

      Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:

      • A.

        \(1,2\)

      • B.

        \(1,4\)

      • C.

        \(1,5\)

      • D.

        \(1,8\)

      Đáp án : B

      Phương pháp giải :

      Chuyển hỗn số đó về phân số thập phân, sau đó viết dưới dạng số thập phân.

      Lời giải chi tiết :

      \(1\dfrac{2}{5} = \dfrac{{1.5 + 2}}{5} = \dfrac{7}{5} = \dfrac{{14}}{{10}} = 1,4.\)

      Câu 3 :

      Số thập phân \(3,015\) được chuyển thành phân số là:

      • A.

        \(\dfrac{{3015}}{{10}}\) 

      • B.

        \(\dfrac{{3015}}{{100}}\)

      • C.

        \(\dfrac{{3015}}{{1000}}\) 

      • D.

        \(\dfrac{{3015}}{{10000}}\)

      Đáp án : C

      Phương pháp giải :

      Áp dụng qui tắc chuyển từ số thập phân về phân số.

      Lời giải chi tiết :

      \(3,015 = \dfrac{{3015}}{{1000}}\)

      Câu 4 :

      Phân số nghịch đảo của phân số: \(\dfrac{{ - 4}}{5}\) là:

      • A.

        \(\dfrac{4}{5}\) 

      • B.

        \(\dfrac{4}{{ - 5}}\)

      • C.

        \(\dfrac{5}{4}\) 

      • D.

        \(\dfrac{{ - 5}}{4}\)

      Đáp án : D

      Phương pháp giải :

      Hai phân số là nghịch đảo của nhau nếu tích của chúng bằng 1.

      Lời giải chi tiết :

      Phân số nghịch đảo của phân số: \(\dfrac{{ - 4}}{5}\) là \(\dfrac{{ - 5}}{4}\).

      Câu 5 :

      Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:

      • A.

        $35$

      • B.

        $36$

      • C.

        $37$

      • D.

        $34$

      Đáp án : B

      Phương pháp giải :

      Áp dụng qui tắc so sánh số thập phân để tìm được $x$

      Lời giải chi tiết :

      Ta có: \(35,67 < x < 36,05\) và \(x\) là số tự nhiên nên \(x = 36\).

      Câu 6 :

      Sắp xếp các phân số sau: \(\dfrac{1}{3};\dfrac{1}{2};\dfrac{3}{8};\dfrac{6}{7}\) theo thứ tự từ lớn đến bé.

      • A.

        \(\dfrac{1}{2};\dfrac{3}{8};\dfrac{1}{3};\dfrac{6}{7}\) 

      • B.

        \(\dfrac{6}{7};\dfrac{1}{2};\dfrac{3}{8};\dfrac{1}{3}\)

      • C.

        \(\dfrac{1}{2};\dfrac{1}{3};\dfrac{3}{8};\dfrac{6}{7}\)

      • D.

        $\dfrac{6}{7};\dfrac{3}{8};\dfrac{1}{3};\dfrac{1}{2}$

      Đáp án : B

      Phương pháp giải :

      + Quy đồng tử số các phân số ta được các phân số cùng tử, sau đó so sánh và sắp xếp theo thứ tự từ lớn đến bé.

      + Chú ý rằng với những phân số dương cùng tử số , phân số nào có mẫu bé hơn thì phân số đó lớn hơn.

      + Hoặc quy đồng mẫu số các phân số rồi so sánh.

      Lời giải chi tiết :

      Ta có: $\dfrac{1}{3} = \dfrac{6}{{18}};\;\;\dfrac{1}{2} = \dfrac{6}{{12}};\;\;\dfrac{3}{8} = \dfrac{6}{{16}}.$

      Vì:$\dfrac{6}{{18}} < \dfrac{6}{{16}} < \dfrac{6}{{12}} < \dfrac{6}{7} \Rightarrow \dfrac{6}{7} > \dfrac{1}{2} > \dfrac{3}{8} > \dfrac{1}{3}$.

      Vậy các phân số trên được sắp xếp theo thứ tự từ lớn đến bé là: \(\dfrac{6}{7};\;\dfrac{1}{2};\;\dfrac{3}{8};\;\dfrac{1}{3}.\)

      Câu 7 :

      Rút gọn phân số \(\dfrac{{ - 24}}{{105}}\) đến tối giản ta được:

      • A.

        \(\dfrac{8}{{35}}\)

      • B.

        \(\dfrac{{ - 8}}{{35}}\)

      • C.

        \(\dfrac{{ - 12}}{{35}}\) 

      • D.

        \(\dfrac{{12}}{{35}}\)

      Đáp án : B

      Phương pháp giải :

      Phân số tối giản là phân số mà tử và mẫu có ước chung lớn nhất bằng 1.

      Lời giải chi tiết :

      \(\dfrac{{ - 24}}{{105}} = \dfrac{{ - 24:3}}{{105:3}} = \dfrac{{ - 8}}{{35}}\)

      Câu 8 :

      Tìm một phân số ở giữa hai phân số \(\dfrac{1}{{10}}\) và \(\dfrac{2}{{10}}\).

      • A.

        \(\dfrac{3}{{10}}\)

      • B.

        \(\dfrac{{15}}{{10}}\)

      • C.

        \(\dfrac{{15}}{{100}}\) 

      • D.

        Không có phân số nào thỏa mãn.

      Đáp án : C

      Phương pháp giải :

      Chuyển hai phân số đã cho về số thập phân, sau đó ta áp dụng phương pháp so sánh số thập phân.

      Lời giải chi tiết :

      Ta có: \(\dfrac{1}{{10}} = 0,1;\;\;\,\dfrac{2}{{10}} = 0,2\)

      Vậy số cần tìm phải thỏa mãn: \(0,1 < x < 0,2\) nên trong các đáp án trên thì \(x\) chỉ có thể là \(0,15 = \dfrac{{15}}{{100}}.\)

      Câu 9 :

      Tính: \(3\dfrac{3}{5} + 1\dfrac{1}{6}\) .

      • A.

        \(4\dfrac{{23}}{{30}}\)

      • B.

        \(5\dfrac{{23}}{{30}}\)

      • C.

        \(2\dfrac{{23}}{{30}}\)

      • D.

        \(3\dfrac{{23}}{{30}}\)

      Đáp án : A

      Phương pháp giải :

      Áp dụng qui tắc cộng hai hỗn số hoặc đưa hỗn số về dạng phân số rồi cộng hai phân số.

      Lời giải chi tiết :

      \(3\dfrac{3}{5} + 1\dfrac{1}{6} = \left( {3 + 1} \right) + \left( {\dfrac{3}{5} + \dfrac{1}{6}} \right) = 4 + \dfrac{{23}}{{30}} = 4\dfrac{{23}}{{30}}.\)

      Câu 10 :

      Tính: \(\dfrac{6}{{15}} + \dfrac{{12}}{{ - 15}}\) là:

      • A.

        \(\dfrac{{18}}{{15}}\)

      • B.

        \(\dfrac{{ - 2}}{5}\)

      • C.

        \(\dfrac{1}{5}\)

      • D.

        \(\dfrac{{ - 1}}{5}\)

      Đáp án : B

      Phương pháp giải :

      Đưa về hai phân số cùng mẫu

      Áp dụng qui tắc: Muốn cộng hai phân số cùng mẫu ta cộng các tử và giữ nguyên mẫu.

      \(\dfrac{a}{m} + \dfrac{b}{m} = \dfrac{{a + b}}{m}\)

      Lời giải chi tiết :

      \(\dfrac{6}{{15}} + \dfrac{{12}}{{ - 15}} = \dfrac{6}{{15}} + \left( {\dfrac{{ - 12}}{{15}}} \right) = \dfrac{{6 + \left( { - 12} \right)}}{{15}} = \dfrac{{ - 6}}{{15}} = \dfrac{{ - 2}}{5}\)

      Câu 11 :

      Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).

      • A.

        \(x = 4\)

      • B.

        \(x = - 4\)

      • C.

        \(x = 5\)

      • D.

        \(x = - 0,2\)

      Đáp án : D

      Phương pháp giải :

      Chuyển phân số về số thập phân, áp dụng qui tắc nhân, chia số thập phân để tìm \(x\).

      Lời giải chi tiết :

      \(\begin{array}{l}2,4.x = \dfrac{{ - 6}}{5}.0,4\\2,4.x = - 1,2.0,4\\2,4.x = - 0,48\\x = - 0,48:2,4\\x = - 0,2.\end{array}\)

      Câu 12 :

      Cho hai biểu thức \(B = \left( {\dfrac{2}{3} - 1\dfrac{1}{2}} \right):\dfrac{4}{3} + \dfrac{1}{2}\) và \(C = \dfrac{9}{{23}}.\dfrac{5}{8} + \dfrac{9}{{23}}.\dfrac{3}{8} - \dfrac{9}{{23}}\). Chọn câu đúng.

      • A.

        \(B < 0;C = 0\)

      • B.

        \(B > 0;C = 0\)

      • C.

        \(B < 0;C < 0\)

      • D.

        \(B = 0;C < 0\)

      Đáp án : A

      Phương pháp giải :

      Áp dụng qui tắc tính giá trị của biểu thức:

      Ta thực hiện các phép tính theo thứ tự: Trong ngoặc \( \to \) nhân chia \( \to \) cộng trừ

      Lời giải chi tiết :

      \(\begin{array}{l}B = \,\,\left( {\dfrac{2}{3} - 1\dfrac{1}{2}} \right):\dfrac{4}{3} + \dfrac{1}{2}\\ = \left( {\dfrac{2}{3} - \dfrac{3}{2}} \right).\dfrac{3}{4} + \dfrac{1}{2}\\ = \dfrac{{ - 5}}{6}.\dfrac{3}{4} + \dfrac{1}{2}\\ = \dfrac{{ - 5}}{8} + \dfrac{1}{2}\\ = \dfrac{{ - 1}}{8}.\end{array}\)

      \(\begin{array}{l}C = \,\dfrac{9}{{23}}.\dfrac{5}{8} + \dfrac{9}{{23}}.\dfrac{3}{8} - \dfrac{9}{{23}}\\ = \dfrac{9}{{23}}.\left( {\dfrac{5}{8} + \dfrac{3}{8} - 1} \right)\\ = \dfrac{9}{{23}}.\left( {1 - 1} \right)\\ = \dfrac{9}{{23}}.0\\ = 0.\end{array}\)

      Vậy \(C = 0;B < 0\)

      Câu 13 :

      Rút gọn phân số \(\dfrac{{1978.1979 + 1980.21 + 1958}}{{1980.1979 - 1978.1979}}\) ta được kết quả là

      • A.

        \(2000\)

      • B.

        \(1000\)

      • C.

        \(100\)

      • D.

        \(200\)

      Đáp án : B

      Phương pháp giải :

      Phân tích cả tử và mẫu để xuất hiện thừa số chung, sau đó rút gọn đến phân số tối giản.

      Lời giải chi tiết :

      \(\begin{array}{l}\;\;\dfrac{{1978.1979 + 1980.21 + 1958}}{{1980.1979 - 1978.1979}}\\ = \dfrac{{1978.1979 + \left( {1979 + 1} \right).21 + 1958}}{{1979\left( {1980 - 1978} \right)}}\\ = \dfrac{{1978.1979 + 1979.21 + 21 + 1958}}{{1979.2}}\\ = \dfrac{{1978.1979 + 1979.21 + 1979}}{{1979.2}}\\ = \dfrac{{1979.\left( {1978 + 21 + 1} \right)}}{{1979.2}}\\ = \dfrac{{2000}}{2} = 1000.\end{array}\)

      Câu 14 :

      Cho \(x\) là giá trị thỏa mãn \(\dfrac{6}{7}x - \dfrac{1}{2} = 1\)

      • A.

        \(x = \dfrac{9}{{14}}\)

      • B.

        \(x = \dfrac{7}{4}\)

      • C.

        \(x = \dfrac{{ - 7}}{4}\)

      • D.

        \(x = \dfrac{9}{7}\)

      Đáp án : B

      Phương pháp giải :

      Áp dụng qui tắc chuyển vế đổi dấu để tìm x.

      Hoặc xác định \(\dfrac{6}{7}x\) là số bị trừ; \(\dfrac{1}{2}\) là số trừ và 1 là hiệu rồi áp dụng: số bị trừ bằng số trừ + hiệu

      Rồi áp dụng thừa số chưa biết bằng tích chia cho thừa số đã biết

      Lời giải chi tiết :

      \(\begin{array}{l}\,\,\,\,\,\dfrac{6}{7}x - \dfrac{1}{2} = 1\\\;\;\;\dfrac{6}{7}x\;\;\;\;\;\;\; = 1 + \dfrac{1}{2}\\\;\;\;\dfrac{6}{7}x\;\;\;\;\;\;\; = \dfrac{3}{2}\\\;\;\;\;\;x\;\;\;\;\;\;\; = \dfrac{3}{2}:\dfrac{6}{7}\\\;\;\;\;\;x\;\;\;\;\;\;\; = \dfrac{7}{4}.\end{array}\)

      Câu 15 :

      Cho \({x_1}\) là giá trị thỏa mãn \(\dfrac{1}{2} - \left( {\dfrac{2}{3}x - \dfrac{1}{3}} \right) = \dfrac{{ - 2}}{3}\) và \({x_2}\) là giá trị thỏa mãn \(\,\dfrac{5}{6} - x = \dfrac{{ - 1}}{{12}} + \dfrac{4}{3}\) . Khi đó \({x_1} + {x_2}\) bằng

      • A.

        \(\dfrac{8}{3}\)

      • B.

        \(\dfrac{{ - 5}}{{12}}\)

      • C.

        \(\dfrac{9}{4}\)

      • D.

        \(\dfrac{{11}}{6}\)

      Đáp án : D

      Phương pháp giải :

      Sử dụng qui tắc chuyển vế để tìm \({x_1};{x_2}\)

      Từ đó tính \({x_1} + {x_2}\)

      Lời giải chi tiết :

      \(\begin{array}{l} + )\,\,\dfrac{1}{2} - \left( {\dfrac{2}{3}x - \dfrac{1}{3}} \right) = \dfrac{{ - 2}}{3}\\\dfrac{2}{3}x - \dfrac{1}{3} = \dfrac{1}{2} - \left( {\dfrac{{ - 2}}{3}} \right)\\\dfrac{2}{3}x - \dfrac{1}{3} = \dfrac{7}{6}\\\dfrac{2}{3}x = \dfrac{7}{6} + \dfrac{1}{3}\\\dfrac{2}{3}x = \dfrac{3}{2}\\ x= \dfrac{3}{2}:\dfrac{2}{3}\\ x= \dfrac{9}{4}.\end{array}\)

      Nên \({x_1} = \dfrac{9}{4}\)

      \(\begin{array}{l} + )\,\,\dfrac{5}{6} - x = \dfrac{{ - 1}}{{12}} + \dfrac{4}{3}\\\dfrac{5}{6} - x = \dfrac{5}{4}\\x = \dfrac{5}{6} - \dfrac{5}{4}\\x = \dfrac{{ - 5}}{{12}}.\end{array}\)

      Nên \({x_2} = - \dfrac{5}{{12}}\)

      Từ đó \({x_1} + {x_2} = \dfrac{9}{4} + \left( { - \dfrac{5}{{12}}} \right) = \dfrac{{11}}{6}\)

      Câu 16 :

      Rút gọn phân số \(A = \dfrac{{7.9 + 14.27 + 21.36}}{{21.27 + 42.81 + 63.108}}\) đến tối giản ta được kết quả là phân số có mẫu số là

      • A.

        \(9\)

      • B.

        \(1\)

      • C.

        \(\dfrac{1}{9}\)

      • D.

        \(2\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng tính chất phân phối của phép nhân đối với phép cộng để biến đổi tử số và mẫu số.

      Từ đó rút gọn phân số

      Lời giải chi tiết :

      Ta có

       \(\begin{array}{l}A = \dfrac{{7.9 + 14.27 + 21.36}}{{21.27 + 42.81 + 63.108}}\\ = \dfrac{{7.9\left( {1 + 2.3 + 3.4} \right)}}{{21.27\left( {1 + 2.3 + 3.4} \right)}}\\ = \dfrac{{7.9}}{{3.7.9.3}}\\ = \dfrac{1}{9}\end{array}\)

      Phân số này có mẫu số là 9.

      Câu 17 :

      Cho \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\) và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\) . Chọn đáp án đúng.

      • A.

        \(A < - B\)

      • B.

        \(2A > B\)

      • C.

        \(A > B\)

      • D.

        \(A = B\)

      Đáp án : D

      Phương pháp giải :

      Chuyển hỗn số về dạng phân số rồi rút gọn từng biểu thức A; B để so sánh.

      Lời giải chi tiết :

      Ta có \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\)\( = \dfrac{{\left( {\dfrac{{47}}{{15}} + \dfrac{3}{{15}}} \right):\dfrac{5}{2}}}{{\left( {\dfrac{{38}}{7} - \dfrac{9}{4}} \right):\dfrac{{267}}{{56}}}} = \dfrac{{\dfrac{{50}}{{15}}.\dfrac{2}{5}}}{{\left( {\dfrac{{152}}{{28}} - \dfrac{{63}}{{28}}} \right).\dfrac{{56}}{{267}}}}\)\( = \dfrac{{\dfrac{4}{3}}}{{\dfrac{{89}}{{28}}.\dfrac{{56}}{{267}}}} = \dfrac{{\dfrac{4}{3}}}{{\dfrac{2}{3}}} = 2\)

      Và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\)\( = \dfrac{{\dfrac{6}{5}:\left( {\dfrac{6}{5}.\dfrac{5}{4}} \right)}}{{\dfrac{8}{{25}} + \dfrac{2}{{25}}}} = \dfrac{{\dfrac{6}{5}:\dfrac{3}{2}}}{{\dfrac{{10}}{{25}}}} = \dfrac{{\dfrac{4}{5}}}{{\dfrac{2}{5}}} = 2\)

      Vậy \(A = B.\)

      Câu 18 :

      Người ta mở vòi cho nước chảy vào đầy bể cần \(3\) giờ. Hỏi nếu mở vòi nước đó trong \(45\) phút thì được bao nhiêu phần của bể?

      • A.

        \(\dfrac{1}{3}\)

      • B.

        \(\dfrac{1}{4}\)

      • C.

        $\dfrac{2}{3}$

      • D.

        \(\dfrac{1}{2}\)

      Đáp án : B

      Phương pháp giải :

      Tìm số phần bể vòi nước chảy được trong 1 giờ, rồi lấy kết quả đó nhân với thời gian mở vòi nước.

      Lời giải chi tiết :

      Đổi: \(45\)phút = \(\dfrac{3}{4}\) giờ

      Mỗi giờ vòi nước chảy được số phần bể là: \(1:3 = \dfrac{1}{3}\) (bể)

      Nếu mở vòi trong 45 phút thì được số phần bể là: \(\dfrac{3}{4}.\dfrac{1}{3} = \dfrac{1}{4}\)(bể)

      Câu 19 :

      Lúc 7 giờ 5 phút, một người đi xe máy đi từ A và đến B lúc 8 giờ 45 phút. Biết quãng đường AB dài 65km. Tính vận tốc của người đi xe máy đó?

      • A.

        \(39\) km/h

      • B.

        \(40\) km/h

      • C.

        $42$ km/h

      • D.

        \(44\) km/h

      Đáp án : A

      Phương pháp giải :

      Áp dụng công thức: vận tốc = quãng đường : thời gian.

      Lời giải chi tiết :

      Thời gian người đó đi hết quãng đường AB là: 8 giờ 45 phút – 7 giờ 5 phút = 1 giờ 40 phút

      Đổi 1 giờ 40 phút = \(\dfrac{5}{3}\) giờ.

      Vận tốc của người đi xe máy đó là: \(65:\dfrac{5}{3} = 39\left( {km/h} \right)\)

      Câu 20 :

      Chọn câu đúng.

      • A.

        $\dfrac{{23}}{{99}} < \dfrac{{2323}}{{9999}} < \dfrac{{232323}}{{999999}} < \dfrac{{23232323}}{{99999999}}$

      • B.

        $\dfrac{{23}}{{99}} > \dfrac{{2323}}{{9999}} > \dfrac{{232323}}{{999999}} > \dfrac{{23232323}}{{99999999}}$

      • C.

        $\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} < \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$

      • D.

        $\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} = \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$

      Đáp án : D

      Phương pháp giải :

      Áp dụng tính chất phân số để rút gọn các phấn số

      So sánh hai phân số cùng mẫu

      Lời giải chi tiết :

      Ta có:

      \(\dfrac{{2323}}{{9999}} = \dfrac{{2323:101}}{{9999:101}} = \dfrac{{23}}{{99}}\)

      \(\dfrac{{232323}}{{999999}} = \dfrac{{232323:10101}}{{999999:10101}} = \dfrac{{23}}{{99}}\)

      \(\dfrac{{23232323}}{{99999999}} = \dfrac{{23232323:1010101}}{{99999999:1010101}} = \dfrac{{23}}{{99}}\)

      Vậy $\dfrac{{23}}{{99}} = \dfrac{{2323}}{{9999}} = \dfrac{{232323}}{{999999}} = \dfrac{{23232323}}{{99999999}}$

      Câu 21 :

      Không qui đồng, hãy so sánh hai phân số sau: \(\dfrac{{37}}{{67}}\) và \(\dfrac{{377}}{{677}}\).

      • A.

        \(\dfrac{{37}}{{67}} < \dfrac{{377}}{{677}}\)

      • B.

        \(\dfrac{{37}}{{67}} > \dfrac{{377}}{{677}}\)

      • C.

        \(\dfrac{{37}}{{67}} = \dfrac{{377}}{{677}}\)

      • D.

        \(\dfrac{{37}}{{67}} \ge \dfrac{{377}}{{677}}\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng so sánh với phần bù của 1

      Lời giải chi tiết :

      Ta có:

      \(1 - \dfrac{{37}}{{67}} = \dfrac{{30}}{{67}};\;\;\;\;1 - \dfrac{{377}}{{677}} = \dfrac{{300}}{{677}}.\)

      Lại có: \(\dfrac{{30}}{{67}} = \dfrac{{300}}{{670}} > \dfrac{{300}}{{677}}\) nên \(\dfrac{{37}}{{67}} < \dfrac{{377}}{{677}}\) .

      Câu 22 :

      Chọn câu đúng.

      • A.

        \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.2.3.4.5.6.7...60\)

      • B.

        \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.3.5.7...59\)

      • C.

        \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 1.3.5.7...60\)

      • D.

        \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = 2.4.6.8...60\)

      Đáp án : B

      Phương pháp giải :

      Sử dụng tính chất cơ bản của phân số: Nhân cả tử và mẫu của một phân số với cùng một số khác 0 thì ta được phân số mới bằng phân số đã cho.

      Lời giải chi tiết :

      Ta có \(\dfrac{{31}}{2}.\dfrac{{32}}{2}.\dfrac{{33}}{2}....\dfrac{{60}}{2} = \dfrac{{31.32.33...60}}{{2.2.2....2}} = \dfrac{{\left( {31.32.33...60} \right)\left( {1.2.3...30} \right)}}{{{2^{30}}\left( {1.2.3...30} \right)}}\)

      \( = \dfrac{{1.2.3.4.5...60}}{{\left( {1.2} \right).\left( {2.2} \right).\left( {3.2} \right).\left( {4.2} \right)...\left( {30.2} \right)}}\)\( = \dfrac{{\left( {2.4.6...60} \right)\left( {1.3.5.7...59} \right)}}{{2.4.6...60}} = 1.3.5...59\)

      Cho phân số \(A = \dfrac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\)

      Câu 23

      Có bao nhiêu giá trị nguyên của \(n\) để A có giá trị nguyên.

      • A.

        \(10\)

      • B.

        \(8\)

      • C.

        \(6\)

      • D.

        \(4\)

      Đáp án: B

      Phương pháp giải :

      Ta biến đổi để đưa A về dạng \(A = m - \dfrac{a}{B}\) với m và a là số nguyên. Khi đó A có giá trị nguyên khi \(a\, \vdots \,B\) hay \(B \in Ư\left( a \right)\)

      Lời giải chi tiết :

      Ta có \(A = \dfrac{{n - 5}}{{n + 1}} = \dfrac{{n + 1 - 6}}{{n + 1}} = \dfrac{{n + 1}}{{n + 1}} - \dfrac{6}{{n + 1}} = 1 - \dfrac{6}{{n + 1}}\)

      Để A có giá trị nguyên thì \(6\, \vdots \,\left( {n + 1} \right) \Rightarrow \left( {n + 1} \right) \in Ư\left( 6 \right) = \left\{ { \pm 1; \pm 2; \pm 3; \pm 6} \right\}\)

      Ta có bảng sau

      Trắc nghiệm Bài tập cuối chương VI Toán 6 Kết nối tri thức 0 1

      Vậy có 8 giá trị của n thỏa mãn là \(0; - 2;1; - 3;2; - 4;5; - 7.\)

      Câu 24

      Tìm điều kiện của n để A là phân số tối giản.

      • A.

        \(n \ne 2k - 1\left( {k \in Z} \right)\)

      • B.

        \(n \ne 3k - 1\left( {k \in Z} \right)\)

      • C.

        \(n \ne 2k - 1\left( {k \in Z} \right)\) và \(n \ne 3k - 1\left( {k \in Z} \right)\)

      • D.

        \(n \ne 2k\left( {k \in Z} \right)\) và \(n \ne 3k\left( {k \in Z} \right)\)

      Đáp án: C

      Phương pháp giải :

      Ta sử dụng phân số \(\dfrac{A}{B}\) tối giản khi A và B là hai số nguyên tố cùng nhau nghĩa là \(\left( {A;B} \right) = 1\)

      Lời giải chi tiết :

      Để A tối giản thì (n-5) và (n+1) là hai số nguyên tố cùng nhau \( \Rightarrow \left( {n - 5;n + 1} \right) = 1\)

      \( \Leftrightarrow \left( {n + 1 - n + 5;n + 1} \right) = 1 \Leftrightarrow \left( {n + 1;6} \right) = 1\)

      Từ đó (n+1) không chia hết cho 2 và (n+1) không chia hết cho 3 

      Hay \(n \ne 2k - 1\) và \(n \ne 3k - 1\,\,\left( {k \in Z} \right)\)

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Trắc nghiệm Bài tập cuối chương VI Toán 6 Kết nối tri thức – nội dung then chốt trong chuyên mục sgk toán lớp 6 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Bài tập cuối chương VI Toán 6 Kết nối tri thức: Tổng quan và hướng dẫn giải

      Chương VI Toán 6 Kết nối tri thức tập trung vào các kiến thức về phân số, so sánh và sắp xếp phân số, các phép toán trên phân số, và ứng dụng của phân số trong thực tế. Việc nắm vững các khái niệm và kỹ năng này là nền tảng quan trọng cho các chương học tiếp theo.

      1. Các kiến thức trọng tâm của chương VI

      • Phân số: Định nghĩa, cách biểu diễn phân số, phân số bằng nhau.
      • So sánh phân số: Quy tắc so sánh phân số, so sánh phân số với 1, so sánh phân số âm và phân số dương.
      • Các phép toán trên phân số: Cộng, trừ, nhân, chia phân số, quy tắc dấu trong các phép toán.
      • Ứng dụng của phân số: Giải các bài toán thực tế liên quan đến phân số.

      2. Các dạng bài tập thường gặp trong chương VI

      1. Bài tập nhận biết phân số: Xác định tử số, mẫu số, phân số tối giản.
      2. Bài tập so sánh phân số: So sánh hai phân số, sắp xếp các phân số theo thứ tự tăng dần hoặc giảm dần.
      3. Bài tập thực hiện các phép toán trên phân số: Tính tổng, hiệu, tích, thương của các phân số.
      4. Bài tập giải toán có liên quan đến phân số: Áp dụng kiến thức về phân số để giải các bài toán thực tế.

      3. Hướng dẫn giải một số dạng bài tập điển hình

      a. Bài tập so sánh phân số

      Để so sánh hai phân số, ta có thể thực hiện các bước sau:

      1. Quy đồng mẫu số của hai phân số.
      2. So sánh hai phân số sau khi đã quy đồng mẫu số.

      Ví dụ: So sánh 2/3 và 3/4. Ta quy đồng mẫu số của hai phân số là 12. Khi đó, 2/3 = 8/12 và 3/4 = 9/12. Vì 8/12 < 9/12 nên 2/3 < 3/4.

      b. Bài tập cộng, trừ phân số

      Để cộng hoặc trừ hai phân số, ta cần thực hiện các bước sau:

      1. Quy đồng mẫu số của hai phân số.
      2. Cộng hoặc trừ hai phân số sau khi đã quy đồng mẫu số.
      3. Rút gọn phân số kết quả (nếu có thể).

      Ví dụ: Tính 1/2 + 1/3. Ta quy đồng mẫu số của hai phân số là 6. Khi đó, 1/2 = 3/6 và 1/3 = 2/6. Vậy 1/2 + 1/3 = 3/6 + 2/6 = 5/6.

      4. Luyện tập với trắc nghiệm Bài tập cuối chương VI Toán 6 Kết nối tri thức

      Để đạt kết quả tốt nhất trong các bài kiểm tra và bài thi, các em cần luyện tập thường xuyên với các dạng bài tập khác nhau. Bộ trắc nghiệm Bài tập cuối chương VI Toán 6 Kết nối tri thức tại giaitoan.edu.vn sẽ giúp các em làm điều đó một cách hiệu quả.

      5. Mẹo làm bài trắc nghiệm Toán 6 hiệu quả

      • Đọc kỹ đề bài, xác định đúng yêu cầu của câu hỏi.
      • Loại trừ các đáp án sai trước khi chọn đáp án đúng.
      • Sử dụng các kiến thức đã học để giải quyết bài toán.
      • Kiểm tra lại đáp án trước khi nộp bài.

      6. Tầm quan trọng của việc luyện tập thường xuyên

      Luyện tập thường xuyên không chỉ giúp các em nắm vững kiến thức mà còn giúp các em rèn luyện kỹ năng giải toán nhanh và chính xác. Điều này sẽ giúp các em tự tin hơn trong các kỳ thi và đạt được kết quả tốt nhất.

      7. Kết luận

      Hy vọng rằng bộ Trắc nghiệm Bài tập cuối chương VI Toán 6 Kết nối tri thức tại giaitoan.edu.vn sẽ là công cụ hữu ích giúp các em học tập và ôn luyện hiệu quả. Chúc các em học tốt!

      Tài liệu, đề thi và đáp án Toán 6