Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 2 trang 29 Chuyên đề học tập Toán 10 – Cánh diều. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách rõ ràng, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp những giải pháp học tập tốt nhất, hỗ trợ bạn giải quyết mọi khó khăn trong môn Toán.
Cho \({S_n} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^n}}}\) và \({T_n} = 2 - \frac{1}{{{2^n}}}\), với \(n \in \mathbb{N}*\)
Đề bài
Cho \({S_n} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^n}}}\) và \({T_n} = 2 - \frac{1}{{{2^n}}}\), với \(n \in \mathbb{N}*\)
a) So sánh \({S_1}\) và \({T_1}\); \({S_2}\) và \({T_2}\);\({S_3}\) và \({T_3}\).
b) Dự đoán công thức tính \({S_n}\) và chứng minh bằng phương pháp quy nạp toán học.
Phương pháp giải - Xem chi tiết
Phương pháp quy nạp: Chứng minh mệnh đề đúng với \(n \ge p\)
Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\)
Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1.\) Kết luận.
Lời giải chi tiết
a) \({S_1} = 1 + \frac{1}{2} = \frac{3}{2}\); \({T_1} = 2 - \frac{1}{{{2^1}}} = \frac{3}{2}\)
Do đó \({S_1} = {T_1}\)
\({S_2} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} = \frac{7}{4}\); \({T_2} = 2 - \frac{1}{{{2^2}}} = \frac{7}{4}\)
Do đó \({S_2} = {T_2}\)
\({S_3} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} = \frac{{15}}{8}\); \({T_3} = 2 - \frac{1}{{{2^3}}} = \frac{{15}}{8}\)
Do đó \({S_3} = {T_3}\)
b) Dự doán: \({S_n} = {T_n}\) từ đó có công thức tính \({S_n} = 2 - \frac{1}{{{2^n}}}\)
Chứng minh:
Bước 1: Khi \(n = 1\) ta có \({S_1} = 2 - \frac{1}{{{2^1}}}\) đúng
Như vậy đẳng thức đúng với \(n = 1\)
Bước 2: Với k là một số nguyên dương tùy ý mà đẳng thức đúng, ta phải chứng minh đẳng thức đúng với k+1, tức là:
\({S_{k + 1}} = 2 - \frac{1}{{{2^{k + 1}}}}\)
Thật vậy, theo giả thiết quy nạp ta có:
\({S_k} = 2 - \frac{1}{{{2^k}}}\)
Suy ra
\(\begin{array}{l}{S_{k + 1}} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{k + 1}}}} = {S_k} + \frac{1}{{{2^{k + 1}}}}\\ = 2 - \frac{1}{{{2^k}}} + \frac{1}{{{2^{k + 1}}}} = 2 - \frac{2}{{{2^{k + 1}}}} + \frac{1}{{{2^{k + 1}}}} = 2 - \frac{1}{{{2^{k + 1}}}}\end{array}\)
Vậy đẳng thức đúng với k+1. Do đó, theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi \(n \in \mathbb{N}*\).
Bài 2 trang 29 Chuyên đề học tập Toán 10 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ và ứng dụng của vectơ trong hình học. Bài tập này yêu cầu học sinh phải hiểu rõ định nghĩa vectơ, các phép toán cộng, trừ, nhân với một số thực và tích vô hướng của hai vectơ. Việc giải bài tập này không chỉ giúp học sinh củng cố kiến thức lý thuyết mà còn rèn luyện kỹ năng giải quyết vấn đề thực tế.
Bài 2 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 2 trang 29 Chuyên đề học tập Toán 10 – Cánh diều, chúng tôi xin trình bày lời giải chi tiết cho từng phần của bài tập:
Trong phần này, các em cần xác định đúng các vectơ được đề cập trong bài toán và tìm tọa độ của chúng. Để làm được điều này, các em cần nắm vững định nghĩa vectơ và cách xác định tọa độ vectơ trong hệ tọa độ.
Ví dụ: Cho tam giác ABC với A(xA, yA), B(xB, yB), C(xC, yC). Khi đó, vectơ AB có tọa độ là (xB - xA, yB - yA).
Phần này yêu cầu các em thực hiện các phép toán cộng, trừ, nhân với một số thực trên các vectơ. Các em cần nhớ rõ quy tắc thực hiện các phép toán này:
Tích vô hướng của hai vectơ a(x1, y1) và b(x2, y2) được tính theo công thức: a.b = x1x2 + y1y2. Tích vô hướng có nhiều ứng dụng quan trọng trong hình học, ví dụ như:
Trong phần này, các em cần kết hợp kiến thức về vectơ và hệ tọa độ để giải quyết các bài toán phức tạp hơn. Ví dụ, tìm tọa độ của một điểm thỏa mãn một điều kiện nào đó liên quan đến vectơ.
Để giải bài 2 trang 29 Chuyên đề học tập Toán 10 – Cánh diều một cách hiệu quả, các em cần lưu ý những điều sau:
Bài 2 trang 29 Chuyên đề học tập Toán 10 – Cánh diều là một bài tập quan trọng giúp các em củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng rằng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin hơn trong quá trình học tập và giải quyết các bài toán liên quan đến vectơ.