Chào mừng các em học sinh đến với lời giải chi tiết bài 7 trang 38 Chuyên đề học tập Toán 10 – Cánh diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em hiểu sâu hơn về kiến thức đã học.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các bài giải chuẩn xác, dễ hiểu và đầy đủ.
Tìm hệ số lớn nhất trong khai triển của:
Đề bài
Tìm hệ số lớn nhất trong khai triển của:
a) \({\left( {a + b} \right)^8}\)
b) \({\left( {a + b} \right)^9}\)
Phương pháp giải - Xem chi tiết
Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Hệ số thứ k của biểu thức là \(C_n^{n - k}{a^k}{b^{n - k}}\)
Hệ số lớn nhất trong khai triển là hệ số lớn hơn hệ số đứng sau và đứng trước nó
Lời giải chi tiết
a) Ta có \(C_8^0 < C_8^1 < C_8^2 < ... < C_8^4\) và \(C_8^4 > C_8^5 > C_8^6 > ... > C_8^8\)
Vậy hệ số lớn nhất trong khai triển \({\left( {a + b} \right)^8}\) là \(C_8^4 = 70\)
a) Ta có \(C_9^0 < C_9^1 < C_9^2 < ... < C_9^4 = C_9^5\) và \(C_9^5 > C_9^5 > C_9^7 > ... > C_9^9\)
Vậy hệ số lớn nhất trong khai triển \({\left( {a + b} \right)^9}\) là \(C_9^4 = C_9^5 = 126\)
Bài 7 trang 38 Chuyên đề học tập Toán 10 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và đặc biệt là ứng dụng của vectơ trong việc chứng minh các tính chất hình học.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài 7 trang 38, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Ở đây sẽ là lời giải chi tiết cho từng câu hỏi trong bài 7, ví dụ:)
Đề bài: Cho hình bình hành ABCD. Gọi M là trung điểm của cạnh BC. Chứng minh rằng vectơ AM = (1/2) vectơ AB + vectơ AC.
Lời giải:
Để giải các bài tập về vectơ một cách hiệu quả, các em cần lưu ý những điều sau:
Để củng cố kiến thức, các em có thể tham khảo thêm các bài tập tương tự sau:
Hy vọng rằng với lời giải chi tiết và những lời khuyên trên, các em sẽ tự tin hơn khi giải bài 7 trang 38 Chuyên đề học tập Toán 10 – Cánh diều và các bài tập tương tự. Chúc các em học tập tốt!