Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 37 Chuyên đề học tập Toán 10 – Cánh diều

Giải bài 4 trang 37 Chuyên đề học tập Toán 10 – Cánh diều

Giải bài 4 trang 37 Chuyên đề học tập Toán 10 – Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 37 Chuyên đề học tập Toán 10 – Cánh diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em hiểu sâu hơn về kiến thức Toán học.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các bài giải chuẩn xác, dễ hiểu và đầy đủ.

Xác định hệ số của:

Đề bài

Xác định hệ số của:

a) \({x^{12}}\) trong khai triển của biểu thức \({(x + 4)^{30}}\)

b) \({x^{10}}\) trong khai triển của biểu thức \({(3 + 2x)^{30}}\)

c) \({x^{15}}\) và \({x^{16}}\) trong khai triển của biểu thức \({\left( {\frac{{2x}}{3} - \frac{1}{7}} \right)^{51}}\)

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 37 Chuyên đề học tập Toán 10 – Cánh diều 1

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Lời giải chi tiết

a) Theo công thức nhị thức Newton, ta có:

\({(x + 4)^{30}} = C_{30}^0{x^{30}} + C_{30}^1{x^{29}}{4^1} + ... + C_{30}^k{x^{30 - k}}{4^k} + ... + C_{30}^{30}{4^{30}}\)

Số hạng chứa \({x^{12}}\) ứng với \(30 - k = 12 \Rightarrow k = 18\). Do đó hệ số của \({x^{12}}\) là

\(C_{30}^{18}{4^{18}}\)

b) Theo công thức nhị thức Newton, ta có:

\({(3 + 2x)^{30}} = C_{30}^0{3^{30}} + C_{30}^1{3^{29}}{\left( {2x} \right)^1} + ... + C_{30}^k{3^{30 - k}}{\left( {2x} \right)^k} + ... + C_{30}^{30}{\left( {2x} \right)^{30}}\)

Số hạng chứa \({x^{10}}\) ứng với \(k = 10\). Do đó hệ số của \({x^{10}}\) là

\(C_{30}^{10}{3^{20}}{2^{10}}\)

c) Theo công thức nhị thức Newton, ta có:

\({\left( {\frac{{2x}}{3} - \frac{1}{7}} \right)^{51}} = C_{51}^0{\left( {\frac{{2x}}{3}} \right)^{51}} + C_{51}^1{\left( {\frac{{2x}}{3}} \right)^{50}}{\left( { - \frac{1}{7}} \right)^1} + ... + C_{51}^k{\left( {\frac{{2x}}{3}} \right)^{51 - k}}{\left( { - \frac{1}{7}} \right)^k} + ... + C_{51}^{51}{\left( { - \frac{1}{7}} \right)^{51}}\)

Số hạng chứa \({x^{15}}\) ứng với \(51 - k = 15 \Leftrightarrow k = 36\). Do đó hệ số của \({x^{15}}\) là

\(C_{51}^{15}{\left( {\frac{2}{3}} \right)^{15}}{\left( { - \frac{1}{7}} \right)^{36}}\)

Số hạng chứa \({x^{16}}\) ứng với \(51 - k = 16 \Leftrightarrow k = 35\). Do đó hệ số của \({x^{16}}\) là

\(C_{51}^{16}{\left( {\frac{2}{3}} \right)^{16}}{\left( { - \frac{1}{7}} \right)^{35}}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 4 trang 37 Chuyên đề học tập Toán 10 – Cánh diều đặc sắc thuộc chuyên mục giải sgk toán 10 trên nền tảng toán math. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 4 trang 37 Chuyên đề học tập Toán 10 – Cánh diều: Tổng quan

Bài 4 trang 37 Chuyên đề học tập Toán 10 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ và ứng dụng của vectơ trong hình học. Bài tập này yêu cầu học sinh phải nắm vững các định nghĩa, tính chất và công thức liên quan đến vectơ để giải quyết một cách chính xác.

Nội dung chi tiết bài 4 trang 37

Bài 4 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các vectơ, tìm tọa độ của vectơ.
  • Dạng 2: Thực hiện các phép toán vectơ (cộng, trừ, nhân với một số).
  • Dạng 3: Chứng minh các đẳng thức vectơ.
  • Dạng 4: Ứng dụng vectơ để giải các bài toán hình học (chứng minh ba điểm thẳng hàng, hai đường thẳng song song, vuông góc,...).

Lời giải chi tiết bài 4 trang 37

Để giúp các em hiểu rõ hơn về cách giải bài 4 trang 37, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Ở đây sẽ là nội dung giải chi tiết từng câu hỏi của bài 4, ví dụ):

Câu a:

Đề bài: Cho hai điểm A(1; 2) và B(3; 4). Tìm tọa độ của vectơ AB.

Lời giải:

Vectơ AB có tọa độ là (3 - 1; 4 - 2) = (2; 2).

Câu b:

Đề bài: Cho vectơ a = (1; -2) và vectơ b = (3; 1). Tính vectơ a + b.

Lời giải:

Vectơ a + b có tọa độ là (1 + 3; -2 + 1) = (4; -1).

Các lưu ý khi giải bài tập về vectơ

Để giải tốt các bài tập về vectơ, các em cần lưu ý những điều sau:

  • Nắm vững định nghĩa, tính chất và công thức liên quan đến vectơ.
  • Sử dụng hệ tọa độ để biểu diễn vectơ và thực hiện các phép toán vectơ.
  • Vận dụng các kiến thức hình học để giải quyết các bài toán liên quan đến vectơ.
  • Kiểm tra lại kết quả sau khi giải bài tập.

Bài tập tương tự

Để củng cố kiến thức, các em có thể làm thêm các bài tập tương tự sau:

  1. Tìm tọa độ của vectơ CD với C(0; -1) và D(2; 3).
  2. Tính vectơ 2a - b với a = (-1; 3) và b = (2; -1).
  3. Chứng minh rằng ba điểm E(1; 1), F(2; 3) và G(3; 5) thẳng hàng.

Kết luận

Hy vọng rằng với lời giải chi tiết và những lưu ý trên, các em đã hiểu rõ hơn về cách giải bài 4 trang 37 Chuyên đề học tập Toán 10 – Cánh diều. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

Công thức vectơ quan trọngMô tả
AB = B - AVectơ AB bằng hiệu tọa độ của điểm B và điểm A
a + b = (xa + xb; ya + yb)Phép cộng vectơ
k.a = (kxa; kya)Phép nhân vectơ với một số

Tài liệu, đề thi và đáp án Toán 10