Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 37 Chuyên đề học tập Toán 10 – Cánh diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em hiểu sâu hơn về kiến thức Toán học.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các bài giải chuẩn xác, dễ hiểu và đầy đủ.
Xác định hệ số của:
Đề bài
Xác định hệ số của:
a) \({x^{12}}\) trong khai triển của biểu thức \({(x + 4)^{30}}\)
b) \({x^{10}}\) trong khai triển của biểu thức \({(3 + 2x)^{30}}\)
c) \({x^{15}}\) và \({x^{16}}\) trong khai triển của biểu thức \({\left( {\frac{{2x}}{3} - \frac{1}{7}} \right)^{51}}\)
Phương pháp giải - Xem chi tiết
Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Lời giải chi tiết
a) Theo công thức nhị thức Newton, ta có:
\({(x + 4)^{30}} = C_{30}^0{x^{30}} + C_{30}^1{x^{29}}{4^1} + ... + C_{30}^k{x^{30 - k}}{4^k} + ... + C_{30}^{30}{4^{30}}\)
Số hạng chứa \({x^{12}}\) ứng với \(30 - k = 12 \Rightarrow k = 18\). Do đó hệ số của \({x^{12}}\) là
\(C_{30}^{18}{4^{18}}\)
b) Theo công thức nhị thức Newton, ta có:
\({(3 + 2x)^{30}} = C_{30}^0{3^{30}} + C_{30}^1{3^{29}}{\left( {2x} \right)^1} + ... + C_{30}^k{3^{30 - k}}{\left( {2x} \right)^k} + ... + C_{30}^{30}{\left( {2x} \right)^{30}}\)
Số hạng chứa \({x^{10}}\) ứng với \(k = 10\). Do đó hệ số của \({x^{10}}\) là
\(C_{30}^{10}{3^{20}}{2^{10}}\)
c) Theo công thức nhị thức Newton, ta có:
\({\left( {\frac{{2x}}{3} - \frac{1}{7}} \right)^{51}} = C_{51}^0{\left( {\frac{{2x}}{3}} \right)^{51}} + C_{51}^1{\left( {\frac{{2x}}{3}} \right)^{50}}{\left( { - \frac{1}{7}} \right)^1} + ... + C_{51}^k{\left( {\frac{{2x}}{3}} \right)^{51 - k}}{\left( { - \frac{1}{7}} \right)^k} + ... + C_{51}^{51}{\left( { - \frac{1}{7}} \right)^{51}}\)
Số hạng chứa \({x^{15}}\) ứng với \(51 - k = 15 \Leftrightarrow k = 36\). Do đó hệ số của \({x^{15}}\) là
\(C_{51}^{15}{\left( {\frac{2}{3}} \right)^{15}}{\left( { - \frac{1}{7}} \right)^{36}}\)
Số hạng chứa \({x^{16}}\) ứng với \(51 - k = 16 \Leftrightarrow k = 35\). Do đó hệ số của \({x^{16}}\) là
\(C_{51}^{16}{\left( {\frac{2}{3}} \right)^{16}}{\left( { - \frac{1}{7}} \right)^{35}}\)
Bài 4 trang 37 Chuyên đề học tập Toán 10 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ và ứng dụng của vectơ trong hình học. Bài tập này yêu cầu học sinh phải nắm vững các định nghĩa, tính chất và công thức liên quan đến vectơ để giải quyết một cách chính xác.
Bài 4 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài 4 trang 37, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Ở đây sẽ là nội dung giải chi tiết từng câu hỏi của bài 4, ví dụ):
Đề bài: Cho hai điểm A(1; 2) và B(3; 4). Tìm tọa độ của vectơ AB.
Lời giải:
Vectơ AB có tọa độ là (3 - 1; 4 - 2) = (2; 2).
Đề bài: Cho vectơ a = (1; -2) và vectơ b = (3; 1). Tính vectơ a + b.
Lời giải:
Vectơ a + b có tọa độ là (1 + 3; -2 + 1) = (4; -1).
Để giải tốt các bài tập về vectơ, các em cần lưu ý những điều sau:
Để củng cố kiến thức, các em có thể làm thêm các bài tập tương tự sau:
Hy vọng rằng với lời giải chi tiết và những lưu ý trên, các em đã hiểu rõ hơn về cách giải bài 4 trang 37 Chuyên đề học tập Toán 10 – Cánh diều. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!
Công thức vectơ quan trọng | Mô tả |
---|---|
AB = B - A | Vectơ AB bằng hiệu tọa độ của điểm B và điểm A |
a + b = (xa + xb; ya + yb) | Phép cộng vectơ |
k.a = (kxa; kya) | Phép nhân vectơ với một số |