Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải quyết các bài tập trong mục 3 trang 52 của Chuyên đề học tập Toán 10 - Cánh diều.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học một cách hiệu quả.
Viết phương trình chính tắc của hypebol, biết độ trục ảo bằng 6 và tâm sai bằng \(\frac{5}{4}.\)
Viết phương trình chính tắc của hypebol, biết độ trục ảo bằng 6 và tâm sai bằng \(\frac{5}{4}.\)
Phương pháp giải:
Cho hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:
+ Độ dài trục ảo \(2b\)
+ Tâm sai \(e = \frac{c}{a}\)
Lời giải chi tiết:
Gọi PTCT của hypebol là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) (\(a > 0,b > 0\))
Ta có:
+ Độ dài trục ảo \(2b = 6 \Rightarrow b = 3\)
+ Tâm sai \(e = \frac{c}{a} = \frac{5}{4} \Leftrightarrow \frac{{\sqrt {{a^2} + {b^2}} }}{a} = \frac{5}{4} \Leftrightarrow \frac{{{a^2} + {b^2}}}{{{a^2}}} = \frac{{25}}{{16}}\)
\( \Rightarrow \frac{{{b^2}}}{{{a^2}}} = \frac{{25}}{{16}} - 1 = \frac{9}{{16}} \Rightarrow {a^2} = {3^2}:\frac{9}{{16}} = 16 \Rightarrow a = 4\)
Vậy PTCT của hypebol là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)
Viết phương trình chính tắc của hypebol, biết độ trục ảo bằng 6 và tâm sai bằng \(\frac{5}{4}.\)
Phương pháp giải:
Cho hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:
+ Độ dài trục ảo \(2b\)
+ Tâm sai \(e = \frac{c}{a}\)
Lời giải chi tiết:
Gọi PTCT của hypebol là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) (\(a > 0,b > 0\))
Ta có:
+ Độ dài trục ảo \(2b = 6 \Rightarrow b = 3\)
+ Tâm sai \(e = \frac{c}{a} = \frac{5}{4} \Leftrightarrow \frac{{\sqrt {{a^2} + {b^2}} }}{a} = \frac{5}{4} \Leftrightarrow \frac{{{a^2} + {b^2}}}{{{a^2}}} = \frac{{25}}{{16}}\)
\( \Rightarrow \frac{{{b^2}}}{{{a^2}}} = \frac{{25}}{{16}} - 1 = \frac{9}{{16}} \Rightarrow {a^2} = {3^2}:\frac{9}{{16}} = 16 \Rightarrow a = 4\)
Vậy PTCT của hypebol là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)
Mục 3 trang 52 trong Chuyên đề học tập Toán 10 - Cánh diều thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết các bài tập trong mục này một cách hiệu quả, học sinh cần nắm vững kiến thức lý thuyết liên quan, hiểu rõ các định nghĩa, định lý và công thức đã học. Bài viết này sẽ cung cấp lời giải chi tiết cho từng bài tập, kèm theo các giải thích rõ ràng để giúp bạn hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Trước khi đi vào giải bài tập, chúng ta cần xác định nội dung chính của Mục 3. Thông thường, mục này sẽ đề cập đến một trong các chủ đề sau:
Dưới đây là lời giải chi tiết cho từng bài tập trong Mục 3 trang 52 Chuyên đề học tập Toán 10 - Cánh diều. Chúng tôi sẽ trình bày từng bước giải một cách rõ ràng, kèm theo các giải thích chi tiết để giúp bạn hiểu rõ phương pháp giải.
Đề bài: Cho hai điểm A(1; 2; 3) và B(3; 4; 5). Tính độ dài đoạn thẳng AB.
Lời giải:
Đề bài: Cho hai vectơ a = (1; -2; 3) và b = (2; 1; -1). Tính tích vô hướng của hai vectơ a và b.
Lời giải:
Tích vô hướng của hai vectơ a và b được tính theo công thức: a.b = a₁b₁ + a₂b₂ + a₃b₃
Trong trường hợp này, a.b = (1)(2) + (-2)(1) + (3)(-1) = 2 - 2 - 3 = -3
Kết luận: Tích vô hướng của hai vectơ a và b là -3.
Để giải các bài tập trong Mục 3 trang 52 một cách nhanh chóng và hiệu quả, bạn có thể áp dụng một số mẹo sau:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải quyết các bài tập trong Mục 3 trang 52 Chuyên đề học tập Toán 10 - Cánh diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!
Công thức quan trọng | Mô tả |
---|---|
Độ dài vectơ AB | |AB| = √( (xB - xA)² + (yB - yA)² + (zB - zA)²) |
Tích vô hướng của hai vectơ a và b | a.b = a1b1 + a2b2 + a3b3 |