Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 67 Chuyên đề học tập Toán 10 – Cánh diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em hiểu rõ kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các bài giải chuẩn xác, dễ hiểu và nhiều tài liệu học tập hữu ích khác.
Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta :x = - 5\) và điểm \(F\left( { - 4;0} \right)\). Lấy 3 điểm \(A\left( { - 3;1} \right),B\left( {2;8} \right),C\left( {0;3} \right)\)
Đề bài
Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta :x = - 5\) và điểm \(F\left( { - 4;0} \right)\). Lấy 3 điểm \(A\left( { - 3;1} \right),B\left( {2;8} \right),C\left( {0;3} \right)\)
a) Tính các tỉ số sau: \(\frac{{AF}}{{d\left( {A,\Delta } \right)}},\frac{{BF}}{{d\left( {B,\Delta } \right)}},\frac{{CF}}{{d\left( {C,\Delta } \right)}}\)
b) Hỏi mỗi điểm A, B, C lần lượt nằm trên loại đường conic nào nhận F là tiêu điểm và \(\Delta \) là đường chuẩn ứng với tiêu điểm đó?
Phương pháp giải - Xem chi tiết
a) Ta có:
\(\begin{array}{l}AF = \sqrt {{{\left( { - 4 + 3} \right)}^2} + {{\left( {0 - 1} \right)}^2}} = \sqrt 2 ,d\left( {A,\Delta } \right) = \frac{{\left| { - 3 + 0.1 + 5} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 2 \Rightarrow \frac{{AF}}{{d\left( {A,\Delta } \right)}} = \frac{{\sqrt 2 }}{2}\\BF = \sqrt {{{\left( { - 4 - 2} \right)}^2} + {{\left( {0 - 8} \right)}^2}} = 10,d\left( {B,\Delta } \right) = \frac{{\left| {2 + 0.8 + 5} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 7 \Rightarrow \frac{{BF}}{{d\left( {B,\Delta } \right)}} = \frac{{10}}{7}\\CF = \sqrt {{{\left( { - 4 - 0} \right)}^2} + {{\left( {0 - 3} \right)}^2}} = 5,d\left( {C,\Delta } \right) = \frac{{\left| {0 + 0.3 + 5} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 5 \Rightarrow \frac{{CF}}{{d\left( {C,\Delta } \right)}} = 1\end{array}\)
b)
+ Vì \(\frac{{AF}}{{d\left( {A,\Delta } \right)}} < 1\) nên A nằm trên elip
+ Vì \(\frac{{BF}}{{d\left( {B,\Delta } \right)}} > 1\) nên B nằm trên hypebol
+ Vì \(\frac{{CF}}{{d\left( {C,\Delta } \right)}} = 1\) nên C nằm trên parabol
Lời giải chi tiết
Bài 4 trang 67 Chuyên đề học tập Toán 10 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ và ứng dụng trong hình học. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản và các công thức liên quan.
Bài 4 trang 67 thường yêu cầu học sinh:
(Ở đây sẽ là lời giải chi tiết cho từng ý của bài 4, bao gồm các bước giải, giải thích rõ ràng và sử dụng các công thức liên quan. Ví dụ:)
Ví dụ: Cho tam giác ABC, với A(xA, yA), B(xB, yB), C(xC, yC). Tính độ dài cạnh BC.
Giải:
Vectơ BC = (xC - xB, yC - yB). Độ dài cạnh BC được tính bằng công thức: |BC| = √((xC - xB)2 + (yC - yB)2)
Để củng cố kiến thức và kỹ năng giải bài tập, các em có thể tham khảo các bài tập tương tự sau:
Ngoài việc giải các bài tập cơ bản, các em có thể tìm hiểu thêm về các ứng dụng của vectơ trong hình học giải tích, vật lý và các lĩnh vực khác. Việc nắm vững kiến thức về vectơ sẽ giúp các em giải quyết các bài toán phức tạp một cách dễ dàng hơn.
Khi giải bài tập về vectơ, các em cần lưu ý:
Bài 4 trang 67 Chuyên đề học tập Toán 10 – Cánh diều là một bài tập quan trọng giúp các em củng cố kiến thức về vectơ và ứng dụng trong hình học. Hy vọng với lời giải chi tiết và các bài tập luyện tập trên, các em sẽ tự tin hơn trong quá trình học tập môn Toán.
Công thức | Mô tả |
---|---|
|a| = √(x2 + y2) | Độ dài của vectơ a = (x, y) |
a.b = x1x2 + y1y2 | Tích vô hướng của hai vectơ a = (x1, y1) và b = (x2, y2) |