Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 22 Chuyên đề học tập Toán 10 – Cánh diều. Bài viết này được giaitoan.edu.vn biên soạn nhằm hỗ trợ các em trong quá trình ôn tập và làm bài tập Toán 10.
Chúng tôi sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để các em hiểu rõ bản chất của bài toán.
Một giáo viên dạy Hóa tạo 1000g dung dịch HCl 25% từ ba loại dung dịch HCl có nồng độ lần lượt là 10%, 20% và 30%.
Đề bài
Một giáo viên dạy Hóa tạo 1000g dung dịch HCl 25% từ ba loại dung dịch HCl có nồng độ lần lượt là 10%, 20% và 30%. Tính khối lượng dung dịch mỗi loại. Biết rằng lượng HCl có trong dung dịch 10% bằng \(\frac{1}{4}\) lượng HCl có trong dung dịch 20%.
Phương pháp giải - Xem chi tiết
Bước 1: Lập hệ phương trình
+ Chọn ẩn và đặt điều kiện cho ẩn
+ Biểu diễn các đại lượng chưa biết theo ẩn và đại lượng đã biết
+ Lập các phương trình biểu thị mối quan hệ giữa các đại lượng
Bước 2: Giải hệ phương trình
Bước 3: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán và kết luận.
Lời giải chi tiết
Gọi khối lượng dung dịch HCl 10%, 20% và 30% lần lượt là x, y, z (gam) \((x,y,z > 0)\)
Ta có:
Khối lượng dung dịch thu được là 1000g, hay \(x + y + z = 1000\)
Khối lượng HCl trong dung dịch là: \(25\% .1000 = 10\% .x + 20\% .y + 30\% .z\) hay \(250 = 0,1x + 0,2y + 0,3z\)
Lượng HCl có trong dung dịch 10% bằng \(\frac{1}{4}\) lượng HCl có trong dung dịch 20% hay \(10\% x = \frac{1}{4}.20\% y \Leftrightarrow 0,1x = 0,05y\)
Từ đó ta có hệ phương trình:
\(\left\{ \begin{array}{l}x + y + z = 1000\\0,1x + 0,2y + 0,3z = 250\\0,1x - 0,05y = 0\end{array} \right.\)
Sử dụng máy tính cầm tay, ta được \({I_1} = \frac{{11}}{{28}},{I_2} = \frac{2}{7},{I_3} = \frac{{19}}{{28}}\)
Vậy \({I_1} = \frac{{11}}{{28}}A,{I_2} = \frac{2}{7}A,{I_3} = \frac{{19}}{{28}}A\)
Bài 4 trang 22 Chuyên đề học tập Toán 10 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ và ứng dụng trong hình học phẳng. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.
Bài 4 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài 4 trang 22, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập.
Đề bài: Cho tam giác ABC. Gọi M là trung điểm của BC. Tìm vectơ AM theo vectơ AB và AC.
Lời giải:
Ta có: AM = AB + BM. Vì M là trung điểm của BC nên BM = 1/2 BC. Do đó, AM = AB + 1/2 BC. Mà BC = AC - AB. Vậy, AM = AB + 1/2(AC - AB) = AB + 1/2 AC - 1/2 AB = 1/2 AB + 1/2 AC.
Đề bài: Cho hình bình hành ABCD. Gọi I là giao điểm của hai đường chéo AC và BD. Chứng minh rằng IA = IC.
Lời giải:
Vì ABCD là hình bình hành nên AC và BD cắt nhau tại trung điểm I của mỗi đường. Do đó, I là trung điểm của AC, suy ra IA = IC.
Để củng cố kiến thức về vectơ, các em có thể làm thêm các bài tập tương tự sau:
Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin hơn khi giải bài 4 trang 22 Chuyên đề học tập Toán 10 – Cánh diều và các bài tập liên quan đến vectơ. Chúc các em học tập tốt!