Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải quyết các bài tập trong mục 1 trang 57 của Chuyên đề học tập Toán 10 - Cánh diều.
Chúng tôi hiểu rằng việc học Toán đôi khi có thể gặp nhiều khó khăn. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải chính xác, rõ ràng và dễ tiếp thu nhất.
Trong mặt phẳng tọa độ \(Oxy\), ta xét parabol (P) với phương trình chính tắc \({y^2} = 2px\) trong đó \(p > 0\) (Hình 19)
Trong mặt phẳng tọa độ \(Oxy\), ta xét parabol (P) với phương trình chính tắc \({y^2} = 2px\) trong đó \(p > 0\) (Hình 19)
a) Tìm tọa độ của tiêu điểm F của parabol (P)
b) Tìm tọa độ điểm H và viết phương trình đường chuẩn \(\Delta \) của parabol (P)
c) Cho điểm \(M\left( {x;y} \right)\) nằm trên parabol (P). Gọi \({M_1}\) là điểm đối xứng của M qua trục Ox. Điểm \({M_1}\) có nằm trên parabol (P) không? Tại sao?
Lời giải chi tiết:
a) Tiêu điểm: \(F\left( {\frac{p}{2};0} \right)\)
b) Điểm H có tọa độ \(H\left( { - \frac{p}{2};0} \right)\). Đường chuẩn: \(\Delta :x = - \frac{p}{2}\)
c) \({M_1}\) đối xứng với \(M(x;y)\) qua Ox nên \({M_1}(x; - y)\)
\({M_1}(x; - y) \in (P)\) vì \({( - y)^2} = 2px\)
Trong mặt phẳng tọa độ \(Oxy\), ta xét parabol (P) với phương trình chính tắc \({y^2} = 2px\) trong đó \(p > 0\) (Hình 19)
a) Tìm tọa độ của tiêu điểm F của parabol (P)
b) Tìm tọa độ điểm H và viết phương trình đường chuẩn \(\Delta \) của parabol (P)
c) Cho điểm \(M\left( {x;y} \right)\) nằm trên parabol (P). Gọi \({M_1}\) là điểm đối xứng của M qua trục Ox. Điểm \({M_1}\) có nằm trên parabol (P) không? Tại sao?
Lời giải chi tiết:
a) Tiêu điểm: \(F\left( {\frac{p}{2};0} \right)\)
b) Điểm H có tọa độ \(H\left( { - \frac{p}{2};0} \right)\). Đường chuẩn: \(\Delta :x = - \frac{p}{2}\)
c) \({M_1}\) đối xứng với \(M(x;y)\) qua Ox nên \({M_1}(x; - y)\)
\({M_1}(x; - y) \in (P)\) vì \({( - y)^2} = 2px\)
Mục 1 trang 57 trong Chuyên đề học tập Toán 10 - Cánh diều thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết hiệu quả các bài tập trong mục này, học sinh cần nắm vững kiến thức lý thuyết liên quan, hiểu rõ các định nghĩa, định lý và công thức đã học. Bài viết này sẽ đi sâu vào phân tích từng bài tập, cung cấp lời giải chi tiết và giải thích rõ ràng các bước thực hiện.
Thông thường, Mục 1 trang 57 sẽ bao gồm các dạng bài tập sau:
Đề bài: Cho hàm số f(x) = 2x + 1. Tính f(2) và f(-1).
Lời giải:
Kết luận: f(2) = 5 và f(-1) = -1.
Đề bài: Chứng minh rằng (a + b)^2 = a^2 + 2ab + b^2.
Lời giải:
(a + b)^2 = (a + b) * (a + b) = a * a + a * b + b * a + b * b = a^2 + ab + ab + b^2 = a^2 + 2ab + b^2.
Kết luận: (a + b)^2 = a^2 + 2ab + b^2.
Để giải các bài tập trong Mục 1 trang 57 một cách nhanh chóng và hiệu quả, bạn có thể áp dụng một số mẹo sau:
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học Toán 10 hiệu quả hơn:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải quyết các bài tập trong Mục 1 trang 57 Chuyên đề học tập Toán 10 - Cánh diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!