Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 10 Chuyên đề học tập của giaitoan.edu.vn. Chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong sách, giúp các em nắm vững kiến thức và tự tin hơn trong học tập.
Ở bài viết này, chúng ta sẽ cùng nhau giải quyết các bài tập trong mục 2 trang 7, 8, 9, 10 của Chuyên đề học tập Toán 10 - Cánh diều. Hãy cùng bắt đầu!
Giải hệ phương trình:
Giải hệ phương trình:
\(\left\{ \begin{array}{l}4x + y - 3z = 11\\2x - 3y + 2z = 9\\x + y + z = - 3\end{array} \right.\)
Phương pháp giải:
Bước 1: Khử số hạng chứa x
Bước 2: Khử số hạng chứa y
Bước 3: Giải hệ phương trình có dạng tam giác
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}\quad \;\left\{ \begin{array}{l}4x + y - 3z = 11\\2x - 3y + 2z = 9\\x + y + z = - 3\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}4x + y - 3z = 11\\7y - 7z = - 7\\x + y + z = - 3\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}4x + y - 3z = 11\\7y - 7z = - 7\\3y + 7z = - 23\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}4x + y - 3z = 11\\7y - 7z = - 7\\10y = - 30\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}4x + y - 3z = 11\\7.( - 3) - 7z = - 7\\y = - 3\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}4x + y - 3z = 11\\z = - 2\\y = - 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}4x + ( - 3) - 3.( - 2) = 11\\z = - 2\\y = - 3\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x = 2\\z = - 2\\y = - 3\end{array} \right.\quad \end{array}\)
Vậy hệ phương trình có nghiệm \((x;y;z) = \left( {2; - 3; - 2} \right)\)
Giải hệ phương trình:
\(\left\{ \begin{array}{l}x + y - 3z = - 1\\y - z = 0\\ - x + 2y = 1\end{array} \right.\)
Phương pháp giải:
Bước 1: Khử số hạng chứa x
Bước 2: Khử số hạng chứa y
Bước 3: Giải hệ phương trình có dạng tam giác
Lời giải chi tiết:
Ta có:
\(\quad \;\left\{ \begin{array}{l}x + y - 3z = - 1\\y - z = 0\\ - x + 2y = 1\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x + y - 3z = - 1\quad (1)\\y - z = 0\quad \quad \quad (2)\\3y - 3z = 0\quad \quad (3)\end{array} \right.\)
Phương trình (2) và (3) tương đương. Khi đó, hệ phương trình đưa về:
\(\left\{ \begin{array}{l}x + y - 3z = - 1\\y - z = 0\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x - 2z = - 1\\y = z\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2z - 1\\y = z\end{array} \right.\)
Đặt \(z = t\) với \(t\) là số thực bất kì, ta có: \(x = 2t - 1;y = t.\)
Vậy hệ phương trình đã cho có vô số nghiệm \((x;y;z) = (2t - 1;t;t)\) với \(t\) là số thực bất kì.
Giải hệ phương trình:
\(\left\{ \begin{array}{l}x + 2y + 6z = 5\\ - x + y - 2z = 3\\x - 4y - 2z = 13\end{array} \right.\)
Phương pháp giải:
Bước 1: Khử số hạng chứa x
Bước 2: Khử số hạng chứa y
Bước 3: Giải hệ phương trình có dạng tam giác
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}\quad \;\left\{ \begin{array}{l}x + 2y + 6z = 5\\ - x + y - 2z = 3\\x - 4y - 2z = 13\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 6z = 5\\3y + 4z = 8\\x - 4y - 2z = 13\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 6z = 5\\3y + 4z = 8\\6y + 8z = - 8\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 6z = 5\\3y + 4z = 8\\3y + 4z = - 4\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 6z = 5\\3y + 4z = 8\\8 = - 4\end{array} \right.\quad \end{array}\)
Phương trình thứ ba của hệ vô nghiệm.
Vậy hệ phương trình đã cho vô nghiệm.
Giải hệ phương trình:
\(\left\{ \begin{array}{l}4x + y - 3z = 11\\2x - 3y + 2z = 9\\x + y + z = - 3\end{array} \right.\)
Phương pháp giải:
Bước 1: Khử số hạng chứa x
Bước 2: Khử số hạng chứa y
Bước 3: Giải hệ phương trình có dạng tam giác
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}\quad \;\left\{ \begin{array}{l}4x + y - 3z = 11\\2x - 3y + 2z = 9\\x + y + z = - 3\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}4x + y - 3z = 11\\7y - 7z = - 7\\x + y + z = - 3\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}4x + y - 3z = 11\\7y - 7z = - 7\\3y + 7z = - 23\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}4x + y - 3z = 11\\7y - 7z = - 7\\10y = - 30\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}4x + y - 3z = 11\\7.( - 3) - 7z = - 7\\y = - 3\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}4x + y - 3z = 11\\z = - 2\\y = - 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}4x + ( - 3) - 3.( - 2) = 11\\z = - 2\\y = - 3\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x = 2\\z = - 2\\y = - 3\end{array} \right.\quad \end{array}\)
Vậy hệ phương trình có nghiệm \((x;y;z) = \left( {2; - 3; - 2} \right)\)
Giải hệ phương trình:
\(\left\{ \begin{array}{l}x + 2y + 6z = 5\\ - x + y - 2z = 3\\x - 4y - 2z = 13\end{array} \right.\)
Phương pháp giải:
Bước 1: Khử số hạng chứa x
Bước 2: Khử số hạng chứa y
Bước 3: Giải hệ phương trình có dạng tam giác
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}\quad \;\left\{ \begin{array}{l}x + 2y + 6z = 5\\ - x + y - 2z = 3\\x - 4y - 2z = 13\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 6z = 5\\3y + 4z = 8\\x - 4y - 2z = 13\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 6z = 5\\3y + 4z = 8\\6y + 8z = - 8\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 6z = 5\\3y + 4z = 8\\3y + 4z = - 4\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 6z = 5\\3y + 4z = 8\\8 = - 4\end{array} \right.\quad \end{array}\)
Phương trình thứ ba của hệ vô nghiệm.
Vậy hệ phương trình đã cho vô nghiệm.
Giải hệ phương trình:
\(\left\{ \begin{array}{l}x + y - 3z = - 1\\y - z = 0\\ - x + 2y = 1\end{array} \right.\)
Phương pháp giải:
Bước 1: Khử số hạng chứa x
Bước 2: Khử số hạng chứa y
Bước 3: Giải hệ phương trình có dạng tam giác
Lời giải chi tiết:
Ta có:
\(\quad \;\left\{ \begin{array}{l}x + y - 3z = - 1\\y - z = 0\\ - x + 2y = 1\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x + y - 3z = - 1\quad (1)\\y - z = 0\quad \quad \quad (2)\\3y - 3z = 0\quad \quad (3)\end{array} \right.\)
Phương trình (2) và (3) tương đương. Khi đó, hệ phương trình đưa về:
\(\left\{ \begin{array}{l}x + y - 3z = - 1\\y - z = 0\end{array} \right.\quad \Leftrightarrow \left\{ \begin{array}{l}x - 2z = - 1\\y = z\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2z - 1\\y = z\end{array} \right.\)
Đặt \(z = t\) với \(t\) là số thực bất kì, ta có: \(x = 2t - 1;y = t.\)
Vậy hệ phương trình đã cho có vô số nghiệm \((x;y;z) = (2t - 1;t;t)\) với \(t\) là số thực bất kì.
Mục 2 của Chuyên đề học tập Toán 10 - Cánh diều tập trung vào các kiến thức cơ bản về vectơ, bao gồm định nghĩa, các phép toán trên vectơ, và ứng dụng của vectơ trong hình học. Việc nắm vững các khái niệm này là nền tảng quan trọng để học tốt các chương trình Toán học nâng cao hơn.
Các bài tập trên trang 7 chủ yếu tập trung vào việc hiểu rõ định nghĩa vectơ, cách xác định vectơ, và phân biệt vectơ với đoạn thẳng.
Trang 8 giới thiệu các bài tập về phép cộng vectơ, giúp học sinh làm quen với quy tắc hình bình hành và quy tắc tam giác.
Các bài tập trên trang 9 tập trung vào phép trừ vectơ, liên hệ với phép cộng vectơ và ứng dụng trong giải quyết các bài toán hình học.
Trang 10 giới thiệu phép nhân vectơ với một số thực, giúp học sinh hiểu rõ về sự thay đổi độ dài và chiều của vectơ khi nhân với một số thực.
Để giải tốt các bài tập về vectơ, học sinh cần:
Học Toán không chỉ là việc học thuộc công thức mà còn là việc hiểu bản chất của vấn đề. Hãy dành thời gian suy nghĩ, phân tích và tự giải các bài tập. Đừng ngại hỏi thầy cô hoặc bạn bè khi gặp khó khăn. Chúc các em học tốt!
Bài tập | Phương pháp giải |
---|---|
Bài 1 (Trang 7) | Xác định điểm gốc và điểm cuối của đoạn thẳng AB. |
Bài 4 (Trang 8) | Sử dụng quy tắc hình bình hành để vẽ vectơ a + b. |