Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 1 trang 5, 6, 7 Chuyên đề học tập Toán 10 sách Cánh diều. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự.
Chuyên đề này tập trung vào các kiến thức nền tảng của Toán 10, do đó việc hiểu rõ và nắm vững các khái niệm là vô cùng quan trọng.
Cho phương trình: \(2x + y - 3z = 1quad (1)\)
Cho phương trình: \(2x + y - 3z = 1\quad (1)\)
a) Nêu các ẩn của phương trình (1)
b) Với mỗi ẩn của phương trình (1), xác định bậc của ẩn đó.
Lời giải chi tiết:
a) Phương trình (1) có 3 ẩn là \(x,y,z\)
b) Bậc của các ẩn trong phương trình đều bằng 1.
Cho hệ phương trình \(\left\{ \begin{array}{l}3x + 2y - 5z = - 4\\ - x + 3y + 5z = 5\\2x + 7y - 3z = 3\end{array} \right.\quad (*)\)
a) Mỗi phương trình của hệ (*) là phương trình có dạng như thế nào?
b) Bộ số \((x;y;z) = ( - 2;1;0)\) có là nghiệm của từng phương trình trong hệ hay không? Vì sao?
Phương pháp giải:
+ Phương trình bậc nhất ba ẩn có dạng: \(ax + by + cz = d\), tron đó \(x,y,z\) là ba ẩn; các hệ số \(a,b,c\) không đồng thời bằng 0.
+ Bộ số \((x;y;z) = ({x_0};{y_0};{z_0})\) là một nghiệm của phương trình \(ax + by + cz = d\) nếu mệnh đề \(a{x_0} + b{y_0} + c{z_0} = d\) đúng.
Lời giải chi tiết:
a) Mỗi phương trình của hệ (*) là một phương trình bậc nhất ba ẩn.
b) Bộ số \((x;y;z) = ( - 2;1;0)\) là nghiệm của từng phương trình trong hệ.
Vì khi thay \(x = - 2,y = 1,z = 0\) vào mỗi phương trình, ta đều được mệnh đề đúng. \(\left\{ \begin{array}{l}3.( - 2) + 2.1 - 5.0 = - 4\\ - ( - 2) + 3.1 + 5.0 = 5\\2.( - 2) + 7.1 - 3.0 = 3\end{array} \right.\)
Cho phương trình: \(2x + y - 3z = 1\quad (1)\)
a) Nêu các ẩn của phương trình (1)
b) Với mỗi ẩn của phương trình (1), xác định bậc của ẩn đó.
Lời giải chi tiết:
a) Phương trình (1) có 3 ẩn là \(x,y,z\)
b) Bậc của các ẩn trong phương trình đều bằng 1.
Cho hệ phương trình \(\left\{ \begin{array}{l}3x + 2y - 5z = - 4\\ - x + 3y + 5z = 5\\2x + 7y - 3z = 3\end{array} \right.\quad (*)\)
a) Mỗi phương trình của hệ (*) là phương trình có dạng như thế nào?
b) Bộ số \((x;y;z) = ( - 2;1;0)\) có là nghiệm của từng phương trình trong hệ hay không? Vì sao?
Phương pháp giải:
+ Phương trình bậc nhất ba ẩn có dạng: \(ax + by + cz = d\), tron đó \(x,y,z\) là ba ẩn; các hệ số \(a,b,c\) không đồng thời bằng 0.
+ Bộ số \((x;y;z) = ({x_0};{y_0};{z_0})\) là một nghiệm của phương trình \(ax + by + cz = d\) nếu mệnh đề \(a{x_0} + b{y_0} + c{z_0} = d\) đúng.
Lời giải chi tiết:
a) Mỗi phương trình của hệ (*) là một phương trình bậc nhất ba ẩn.
b) Bộ số \((x;y;z) = ( - 2;1;0)\) là nghiệm của từng phương trình trong hệ.
Vì khi thay \(x = - 2,y = 1,z = 0\) vào mỗi phương trình, ta đều được mệnh đề đúng. \(\left\{ \begin{array}{l}3.( - 2) + 2.1 - 5.0 = - 4\\ - ( - 2) + 3.1 + 5.0 = 5\\2.( - 2) + 7.1 - 3.0 = 3\end{array} \right.\)
Nếu định nghĩa hai hệ phương trình bậc nhất hai ẩn tương đương.
Lời giải chi tiết:
Hai hệ phương trình bậc nhất hai ẩn được gọi là tương đương nếu chúng có cùng tập nghiệm.
Nếu định nghĩa hai hệ phương trình bậc nhất hai ẩn tương đương.
Lời giải chi tiết:
Hai hệ phương trình bậc nhất hai ẩn được gọi là tương đương nếu chúng có cùng tập nghiệm.
Mục 1 của Chuyên đề học tập Toán 10 - Cánh diều thường tập trung vào việc ôn tập và củng cố kiến thức về tập hợp, các phép toán trên tập hợp, và một số khái niệm cơ bản về logic. Việc nắm vững những kiến thức này là nền tảng quan trọng cho việc học tập các kiến thức phức tạp hơn trong chương trình Toán 10.
Để giải các bài tập trong mục này, các em cần:
Bài 1 (Trang 5): Cho A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Tìm A ∪ B và A ∩ B.
Lời giải:
Bài 2 (Trang 6): Cho A = {a, b, c} và B = {b, c, d}. Tìm A \ B và B \ A.
Lời giải:
Bài 3 (Trang 7): Xác định tính đúng sai của mệnh đề: “Nếu a > b thì a2 > b2”.
Lời giải:
Mệnh đề này sai. Ví dụ, nếu a = 1 và b = -2, thì a > b nhưng a2 = 1 < b2 = 4.
Việc nắm vững kiến thức và kỹ năng giải bài tập trong Mục 1 của Chuyên đề học tập Toán 10 - Cánh diều là rất quan trọng. Hy vọng rằng với những hướng dẫn chi tiết và bài tập minh họa trên đây, các em sẽ học tập hiệu quả và đạt kết quả tốt trong môn Toán.