Logo Header
  1. Môn Toán
  2. Trắc nghiệm Các dạng toán về chia hết và chia có dư, tính chất chia hết của một tổng Toán 6 Chân trời sáng tạo

Trắc nghiệm Các dạng toán về chia hết và chia có dư, tính chất chia hết của một tổng Toán 6 Chân trời sáng tạo

Trắc nghiệm Các dạng toán về chia hết và chia có dư, tính chất chia hết của một tổng Toán 6 Chân trời sáng tạo

Chào mừng các em học sinh lớp 6 đến với bài tập trắc nghiệm về các dạng toán chia hết và chia có dư, cùng với tính chất chia hết của một tổng trong chương trình Toán 6 Chân trời sáng tạo. Bài tập này được thiết kế để giúp các em củng cố kiến thức đã học và rèn luyện kỹ năng giải toán.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, bao gồm nhiều mức độ khó khác nhau, giúp các em tự đánh giá năng lực và chuẩn bị tốt nhất cho các bài kiểm tra trên lớp.

Đề bài

    Câu 1 :

    Cho \(a = 2m + 3\), \(b = 2n + 1\)

    Khẳng định nào sau đây đúng?

    • A.

      \(a \vdots 2\)

    • B.

      \(b \vdots 2\)

    • C.

      \(\left( {a + b} \right) \vdots 2\)

    • D.

      \(\left( {a + b} \right)\not \vdots 2\)

    Câu 2 :

    Cho tổng A = 12 + 14 + 16 + x; x là số tự nhiên. Để A không chia hết cho 2 thì

    • A.

      \(x = 199\)

    • B.

      \(x = 198\)

    • C.

      \(x = 1000\)

    • D.

      \(x = 50054\)

    Câu 3 :

    Tìm \(A = 15 + 1003 + x\) với \(x \in N.\) Tìm điều kiện của \(x\) để \(A \, \vdots \, 5.\)

    • A.

      \(x \vdots 5\)

    • B.

      \(x\) chia cho \(5\) dư \(1\)

    • C.

      \(x\) chia cho \(5\) dư \(3\)

    • D.

      \(x\) chia cho \(5\) dư \(2\)

    Câu 4 :

    Có bao nhiêu số tự nhiên \(n\) để \( (n + 4) \, \vdots \, n\) ?

    • A.

      \(3\)

    • B.

      \(4\)

    • C.

      \(2\)

    • D.

      \(1\)

    Câu 5 :

    Cho \(A = 12 + 15 + 36 + x,x \in \mathbb{N}\) . Tìm điều kiện của $x$ để A không chia hết cho \(9.\)

    • A.

      \(x\) chia hết cho \(9.\)

    • B.

      \(x\) không chia hết cho \(9.\)

    • C.

      \(x\) chia hết cho \(4.\)

    • D.

      \(x\) chia hết cho \(3.\)

    Câu 6 :

    Với $a,b$ là các số tự nhiên, nếu \(10a + b\) chia hết cho $13$ thì \(a + 4b\) chia hết cho số nào dưới đây?

    • A.

      \(3\)

    • B.

      \(5\)

    • C.

      \(26\)

    • D.

      \(13\)

    Câu 7 :

    Có bao nhiêu số tự nhiên \(n\) để \(\left( {n + 7} \right) \vdots \left( {n + 2} \right)\) ?

    • A.

      \(3\)

    • B.

      \(2\)

    • C.

      \(1\)

    • D.

      \(0\)

    Câu 8 :

    Chọn câu sai.

    • A.

      Tổng ba số tự nhiên liên tiếp chia hết cho \(3\)

    • B.

      Tổng bốn số tự nhiên liên tiếp không chia hết cho \(4\)

    • C.

      Tổng năm số tự nhiên chẵn liên tiếp chia hết cho \(10\)

    • D.

      Tổng bốn số tự nhiên liên tiếp chia hết cho \(4\)

    Câu 9 :

    Khi chia số a cho 12 ta được số dư là 9. Khi đó:

    • A.

      a chia hết cho 4 nhưng không chia hết cho 3

    • B.

      a chia hết cho 3 nhưng không chia hết cho 4

    • C.

      a chia hết cho 5

    • D.

      a chia hết cho 9

    Câu 10 :

    Cho \(C = 1 + 3 + {3^2} + {3^3} + ... + {3^{11}}\) . Khi đó \(C\) chia hết cho số nào dưới đây?

    • A.

      \(9\)

    • B.

      \(11\)

    • C.

      \(13\)

    • D.

      \(12\)

    Lời giải và đáp án

    Câu 1 :

    Cho \(a = 2m + 3\), \(b = 2n + 1\)

    Khẳng định nào sau đây đúng?

    • A.

      \(a \vdots 2\)

    • B.

      \(b \vdots 2\)

    • C.

      \(\left( {a + b} \right) \vdots 2\)

    • D.

      \(\left( {a + b} \right)\not \vdots 2\)

    Đáp án : C

    Phương pháp giải :

    Sử dụng tính chất 2: \(a \vdots m\)\(b\not \vdots m\)\( \Rightarrow \left( {a + b} \right)\not \vdots m\)

    Lời giải chi tiết :

    Ta có:

    \(\begin{array}{l}\left\{ \begin{array}{l}2m = 2.m \Rightarrow 2m \vdots 2\\3\not \vdots 2\end{array} \right.\\ \Rightarrow a = 2m + 3\not \vdots 2\\\left. \begin{array}{l}2n \vdots 2\\1\not \vdots 2\end{array} \right\} \Rightarrow b = 2n + 1\not \vdots 2\end{array}\)

    => Đáp án A, B sai.

    \(a + b = 2m + 3 + 2n + 1 = 2m + 2n + 4 = 2.\left( {m + n + 2} \right) \vdots 2\)

    Đáp án C đúng.

    Câu 2 :

    Cho tổng A = 12 + 14 + 16 + x; x là số tự nhiên. Để A không chia hết cho 2 thì

    • A.

      \(x = 199\)

    • B.

      \(x = 198\)

    • C.

      \(x = 1000\)

    • D.

      \(x = 50054\)

    Đáp án : A

    Phương pháp giải :

    Nếu tất cả các số hạng chia hết cho 2 thì A chia hết cho 2, nếu trong tổng có 1 số hạng không chia hết cho 2 thì A không chia hết cho 2.

    Lời giải chi tiết :

    Do 12\( \vdots \)2; 14\( \vdots \)2; 16\( \vdots \)2 nên để A \(\not\vdots \)2 thì x \(\not\vdots \)2

    => x\( \in \){1; 3; 5; 7;…} là các số lẻ.

    Câu 3 :

    Tìm \(A = 15 + 1003 + x\) với \(x \in N.\) Tìm điều kiện của \(x\) để \(A \, \vdots \, 5.\)

    • A.

      \(x \vdots 5\)

    • B.

      \(x\) chia cho \(5\) dư \(1\)

    • C.

      \(x\) chia cho \(5\) dư \(3\)

    • D.

      \(x\) chia cho \(5\) dư \(2\)

    Đáp án : D

    Phương pháp giải :

    Sử dụng tính chất 1: Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó để suy ra điều kiện của \(x.\)

    Lời giải chi tiết :

    Ta thấy \(15 \, \vdots \, 5\) và \(1003\) không chia hết cho $5$ nên để \(A = 15 + 1003 + x\) chia hết cho \(5\) thì \(\left( {1003 + x} \right)\) chia hết cho \(5.\)

    Mà \(1003\) chia \(5\) dư \(3\) nên để \(\left( {1003 + x} \right)\) chia hết cho \(5\) thì \(x\) chia \(5\) dư \(2.\)

    Câu 4 :

    Có bao nhiêu số tự nhiên \(n\) để \( (n + 4) \, \vdots \, n\) ?

    • A.

      \(3\)

    • B.

      \(4\)

    • C.

      \(2\)

    • D.

      \(1\)

    Đáp án : A

    Phương pháp giải :

    Sử dụng tính chất 1: Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó để suy ra điều kiện của \(n.\)

    Lời giải chi tiết :

    Vì \(n \, \vdots \, n\) nên để \((n + 4) \, \vdots \, n\) thì \(4 \, \vdots \, n\) (tính chất chia hết của một tổng)

    Vì 4 chia hết cho 1; 2; 4 nên \(n \in \left\{ {1;2;4} \right\}\)

    Vậy có ba giá trị của \(n\) thỏa mãn điều kiện đề bài.

    Câu 5 :

    Cho \(A = 12 + 15 + 36 + x,x \in \mathbb{N}\) . Tìm điều kiện của $x$ để A không chia hết cho \(9.\)

    • A.

      \(x\) chia hết cho \(9.\)

    • B.

      \(x\) không chia hết cho \(9.\)

    • C.

      \(x\) chia hết cho \(4.\)

    • D.

      \(x\) chia hết cho \(3.\)

    Đáp án : B

    Phương pháp giải :

    Sử dụng tính chất 2: Nếu chỉ có một số hạng của tổng không chia hết cho một số, còn các số hạng khác đều chia hết cho số đó thì tổng không chia hết cho số đó để suy ra điều kiện của \(x.\)

    Lời giải chi tiết :

    Ta có: \(A = \left( {12 + 15} \right) + 36 + x\) . Vì \(12 + 15 = 27\,\, \vdots \,\,9\) và \(36\,\, \vdots \,\,9 \)\(\Rightarrow \left( {12 + 15 + 36} \right) = \left( {27 + 36} \right)\,\, \vdots \,\,9\) nên để A không chia hết cho $9$ thì $x$ không chia hết cho $9.$

    Câu 6 :

    Với $a,b$ là các số tự nhiên, nếu \(10a + b\) chia hết cho $13$ thì \(a + 4b\) chia hết cho số nào dưới đây?

    • A.

      \(3\)

    • B.

      \(5\)

    • C.

      \(26\)

    • D.

      \(13\)

    Đáp án : D

    Phương pháp giải :

    Nhân \(a + 4b\) với 10, biến đổi rồi chứng minh dựa vào TC1: Nếu số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó.

    Lời giải chi tiết :

    Xét \(10.\left( {a + 4.b} \right) = 10.a + 40.b \)\(= \left( {10.a + b} \right) + 39.b\) .

    Vì \(\left( {10.a + b} \right)\,\, \vdots \,\,13\) và \(39b\,\, \vdots \,\,13\) nên \(10.\left( {a + 4.b} \right)\,\, \vdots \,\,13\) .

    Do $10$ không chia hết cho $13$ nên suy ra \(\left( {a + 4.b} \right)\,\, \vdots \,\,13\) .

    Vậy nếu \(10a + b\) chia hết cho $13$ thì \(a + 4b\) chia hết cho $13.$

    Câu 7 :

    Có bao nhiêu số tự nhiên \(n\) để \(\left( {n + 7} \right) \vdots \left( {n + 2} \right)\) ?

    • A.

      \(3\)

    • B.

      \(2\)

    • C.

      \(1\)

    • D.

      \(0\)

    Đáp án : C

    Phương pháp giải :

    TC1: Nếu số hạng của một hiệu đều chia hết cho cùng một số thì hiệu chia hết cho số đó.

    Lời giải chi tiết :

    Vì \(\left( {n + 2} \right) \vdots \left( {n + 2} \right)\) nên theo tính chất 1 để \(\left( {n + 7} \right) \vdots \left( {n + 2} \right)\) thì \(\left[ {\left( {n + 7} \right) - \left( {n + 2} \right)} \right] \vdots \left( {n + 2} \right)\) hay \(5 \vdots \left( {n + 2} \right)\) .

    Suy ra \(\left( {n + 2} \right) \in \left\{ {1;5} \right\}\) .

    Vì \(n + 2 \ge 2\) nên \(n + 2 = 5 \Rightarrow n = 5 - 2 = 3.\)

    Vậy \(n = 3.\)

    Vậy có một số tự nhiên \(n\) thỏa mãn yêu cầu.

    Câu 8 :

    Chọn câu sai.

    • A.

      Tổng ba số tự nhiên liên tiếp chia hết cho \(3\)

    • B.

      Tổng bốn số tự nhiên liên tiếp không chia hết cho \(4\)

    • C.

      Tổng năm số tự nhiên chẵn liên tiếp chia hết cho \(10\)

    • D.

      Tổng bốn số tự nhiên liên tiếp chia hết cho \(4\)

    Đáp án : D

    Phương pháp giải :

    Sử dụng tính chất 1: “Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó” và tính chất 2: “Nếu chỉ có một số hạng của tổng không chia hết cho một số, còn các số hạng khác đều chia hết cho số đó thì tổng không chia hết cho số đó” để giải bài toán.

    Lời giải chi tiết :

    +) Gọi ba số tự nhiên liên tiếp là \(n;n + 1;n + 2\) $\left( {n \in N} \right)$ thì tổng ba số tự nhiên liên tiếp là \(n + n + 1 + n + 2 = 3n + 3\). Vì \(3 \vdots 3\) nên \(\left( {3n + 3} \right) \vdots 3\) suy ra A đúng.

    +) Gọi bốn số tự nhiên liên tiếp là \(n;n + 1;n + 2;n + 3\) $\left( {n \in N} \right)$ thì tổng bốn số tự nhiên liên tiếp là \(n + n + 1 + n + 2 + n + 4 = 4n + 7\). Vì $4 \vdots 3;\,7\not \vdots \,4$ nên \(\left( {4n + 7} \right)\not \vdots 4\) suy ra B đúng, D sai.

    +) Gọi năm số tự nhiên chẵn liên tiếp là \(2n;2n + 2;2n + 4;2n + 6;2n + 8\) $\left( {n \in N} \right)$ thì tổng năm số tự nhiên chẵn liên tiếp là \(2n + 2n + 2 + 2n + 4 + 2n + 6 + 2n + 8 = 10n + 20\). Vì $10 \vdots 10;\,20 \vdots 10$ nên \(\left( {10n + 20} \right) \vdots 10\) suy ra C đúng.

    Câu 9 :

    Khi chia số a cho 12 ta được số dư là 9. Khi đó:

    • A.

      a chia hết cho 4 nhưng không chia hết cho 3

    • B.

      a chia hết cho 3 nhưng không chia hết cho 4

    • C.

      a chia hết cho 5

    • D.

      a chia hết cho 9

    Đáp án : B

    Phương pháp giải :

    Sử dụng tính chất 1: “Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó” và tính chất 2: “Nếu chỉ có một số hạng của tổng không chia hết cho một số, còn các số hạng khác đều chia hết cho số đó thì tổng không chia hết cho số đó” để giải bài toán.

    Lời giải chi tiết :

    Vì a chia cho 12 được số dư là 9 nên \(a = 12k + 9\left( {k \in N} \right)\)

    Vì \(12k\, \vdots\, 3;9 \,\vdots \,3 \Rightarrow a = \left( {12k + 9} \right) \vdots\, 3\)

    Và \(12k\, \vdots \,4;9\) không chia hết cho 4 nên \(a = 12k + 9\) không chia hết cho 4.

    Vậy a chia hết cho 3 nhưng không chia hết cho 4.

    Câu 10 :

    Cho \(C = 1 + 3 + {3^2} + {3^3} + ... + {3^{11}}\) . Khi đó \(C\) chia hết cho số nào dưới đây?

    • A.

      \(9\)

    • B.

      \(11\)

    • C.

      \(13\)

    • D.

      \(12\)

    Đáp án : C

    Phương pháp giải :

    Tổng C có 12 số hạng nên nhóm ba số hạng liền nhau , biến đổi để chứng minh dựa vào tính chất : \(a \, \vdots \, m \Rightarrow a.k \, \vdots \, m \, (k \in \mathbb{N})\)

    Lời giải chi tiết :

    Ghép ba số hạng liên tiếp thành một nhóm , ta được

    \(C = 1 + 3 + {3^2} + {3^3} + ... + {3^{11}}\)\( = \left( {1 + 3 + {3^2}} \right) + \left( {{3^3} + {3^4} + {3^5}} \right)... + \left( {{3^9} + {3^{10}} + {3^{11}}} \right)\)

    \( = \left( {1 + 3 + {3^2}} \right) + {3^3}\left( {1 + 3 + {3^2}} \right) + ... + {3^9}\left( {1 + 3 + {3^2}} \right)\)\( = \left( {1 + 3 + {3^2}} \right)\left( {1 + {3^3} + {3^6} + {3^9}} \right)\)

    \( = 13.\left( {1 + {3^3} + {3^6} + {3^9}} \right) \, \vdots \, 13\) (do \(13 \, \vdots \, 13\))

    Vậy \(C \, \vdots \, 13.\)

    Lời giải và đáp án

      Câu 1 :

      Cho \(a = 2m + 3\), \(b = 2n + 1\)

      Khẳng định nào sau đây đúng?

      • A.

        \(a \vdots 2\)

      • B.

        \(b \vdots 2\)

      • C.

        \(\left( {a + b} \right) \vdots 2\)

      • D.

        \(\left( {a + b} \right)\not \vdots 2\)

      Câu 2 :

      Cho tổng A = 12 + 14 + 16 + x; x là số tự nhiên. Để A không chia hết cho 2 thì

      • A.

        \(x = 199\)

      • B.

        \(x = 198\)

      • C.

        \(x = 1000\)

      • D.

        \(x = 50054\)

      Câu 3 :

      Tìm \(A = 15 + 1003 + x\) với \(x \in N.\) Tìm điều kiện của \(x\) để \(A \, \vdots \, 5.\)

      • A.

        \(x \vdots 5\)

      • B.

        \(x\) chia cho \(5\) dư \(1\)

      • C.

        \(x\) chia cho \(5\) dư \(3\)

      • D.

        \(x\) chia cho \(5\) dư \(2\)

      Câu 4 :

      Có bao nhiêu số tự nhiên \(n\) để \( (n + 4) \, \vdots \, n\) ?

      • A.

        \(3\)

      • B.

        \(4\)

      • C.

        \(2\)

      • D.

        \(1\)

      Câu 5 :

      Cho \(A = 12 + 15 + 36 + x,x \in \mathbb{N}\) . Tìm điều kiện của $x$ để A không chia hết cho \(9.\)

      • A.

        \(x\) chia hết cho \(9.\)

      • B.

        \(x\) không chia hết cho \(9.\)

      • C.

        \(x\) chia hết cho \(4.\)

      • D.

        \(x\) chia hết cho \(3.\)

      Câu 6 :

      Với $a,b$ là các số tự nhiên, nếu \(10a + b\) chia hết cho $13$ thì \(a + 4b\) chia hết cho số nào dưới đây?

      • A.

        \(3\)

      • B.

        \(5\)

      • C.

        \(26\)

      • D.

        \(13\)

      Câu 7 :

      Có bao nhiêu số tự nhiên \(n\) để \(\left( {n + 7} \right) \vdots \left( {n + 2} \right)\) ?

      • A.

        \(3\)

      • B.

        \(2\)

      • C.

        \(1\)

      • D.

        \(0\)

      Câu 8 :

      Chọn câu sai.

      • A.

        Tổng ba số tự nhiên liên tiếp chia hết cho \(3\)

      • B.

        Tổng bốn số tự nhiên liên tiếp không chia hết cho \(4\)

      • C.

        Tổng năm số tự nhiên chẵn liên tiếp chia hết cho \(10\)

      • D.

        Tổng bốn số tự nhiên liên tiếp chia hết cho \(4\)

      Câu 9 :

      Khi chia số a cho 12 ta được số dư là 9. Khi đó:

      • A.

        a chia hết cho 4 nhưng không chia hết cho 3

      • B.

        a chia hết cho 3 nhưng không chia hết cho 4

      • C.

        a chia hết cho 5

      • D.

        a chia hết cho 9

      Câu 10 :

      Cho \(C = 1 + 3 + {3^2} + {3^3} + ... + {3^{11}}\) . Khi đó \(C\) chia hết cho số nào dưới đây?

      • A.

        \(9\)

      • B.

        \(11\)

      • C.

        \(13\)

      • D.

        \(12\)

      Câu 1 :

      Cho \(a = 2m + 3\), \(b = 2n + 1\)

      Khẳng định nào sau đây đúng?

      • A.

        \(a \vdots 2\)

      • B.

        \(b \vdots 2\)

      • C.

        \(\left( {a + b} \right) \vdots 2\)

      • D.

        \(\left( {a + b} \right)\not \vdots 2\)

      Đáp án : C

      Phương pháp giải :

      Sử dụng tính chất 2: \(a \vdots m\)\(b\not \vdots m\)\( \Rightarrow \left( {a + b} \right)\not \vdots m\)

      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{l}\left\{ \begin{array}{l}2m = 2.m \Rightarrow 2m \vdots 2\\3\not \vdots 2\end{array} \right.\\ \Rightarrow a = 2m + 3\not \vdots 2\\\left. \begin{array}{l}2n \vdots 2\\1\not \vdots 2\end{array} \right\} \Rightarrow b = 2n + 1\not \vdots 2\end{array}\)

      => Đáp án A, B sai.

      \(a + b = 2m + 3 + 2n + 1 = 2m + 2n + 4 = 2.\left( {m + n + 2} \right) \vdots 2\)

      Đáp án C đúng.

      Câu 2 :

      Cho tổng A = 12 + 14 + 16 + x; x là số tự nhiên. Để A không chia hết cho 2 thì

      • A.

        \(x = 199\)

      • B.

        \(x = 198\)

      • C.

        \(x = 1000\)

      • D.

        \(x = 50054\)

      Đáp án : A

      Phương pháp giải :

      Nếu tất cả các số hạng chia hết cho 2 thì A chia hết cho 2, nếu trong tổng có 1 số hạng không chia hết cho 2 thì A không chia hết cho 2.

      Lời giải chi tiết :

      Do 12\( \vdots \)2; 14\( \vdots \)2; 16\( \vdots \)2 nên để A \(\not\vdots \)2 thì x \(\not\vdots \)2

      => x\( \in \){1; 3; 5; 7;…} là các số lẻ.

      Câu 3 :

      Tìm \(A = 15 + 1003 + x\) với \(x \in N.\) Tìm điều kiện của \(x\) để \(A \, \vdots \, 5.\)

      • A.

        \(x \vdots 5\)

      • B.

        \(x\) chia cho \(5\) dư \(1\)

      • C.

        \(x\) chia cho \(5\) dư \(3\)

      • D.

        \(x\) chia cho \(5\) dư \(2\)

      Đáp án : D

      Phương pháp giải :

      Sử dụng tính chất 1: Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó để suy ra điều kiện của \(x.\)

      Lời giải chi tiết :

      Ta thấy \(15 \, \vdots \, 5\) và \(1003\) không chia hết cho $5$ nên để \(A = 15 + 1003 + x\) chia hết cho \(5\) thì \(\left( {1003 + x} \right)\) chia hết cho \(5.\)

      Mà \(1003\) chia \(5\) dư \(3\) nên để \(\left( {1003 + x} \right)\) chia hết cho \(5\) thì \(x\) chia \(5\) dư \(2.\)

      Câu 4 :

      Có bao nhiêu số tự nhiên \(n\) để \( (n + 4) \, \vdots \, n\) ?

      • A.

        \(3\)

      • B.

        \(4\)

      • C.

        \(2\)

      • D.

        \(1\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng tính chất 1: Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó để suy ra điều kiện của \(n.\)

      Lời giải chi tiết :

      Vì \(n \, \vdots \, n\) nên để \((n + 4) \, \vdots \, n\) thì \(4 \, \vdots \, n\) (tính chất chia hết của một tổng)

      Vì 4 chia hết cho 1; 2; 4 nên \(n \in \left\{ {1;2;4} \right\}\)

      Vậy có ba giá trị của \(n\) thỏa mãn điều kiện đề bài.

      Câu 5 :

      Cho \(A = 12 + 15 + 36 + x,x \in \mathbb{N}\) . Tìm điều kiện của $x$ để A không chia hết cho \(9.\)

      • A.

        \(x\) chia hết cho \(9.\)

      • B.

        \(x\) không chia hết cho \(9.\)

      • C.

        \(x\) chia hết cho \(4.\)

      • D.

        \(x\) chia hết cho \(3.\)

      Đáp án : B

      Phương pháp giải :

      Sử dụng tính chất 2: Nếu chỉ có một số hạng của tổng không chia hết cho một số, còn các số hạng khác đều chia hết cho số đó thì tổng không chia hết cho số đó để suy ra điều kiện của \(x.\)

      Lời giải chi tiết :

      Ta có: \(A = \left( {12 + 15} \right) + 36 + x\) . Vì \(12 + 15 = 27\,\, \vdots \,\,9\) và \(36\,\, \vdots \,\,9 \)\(\Rightarrow \left( {12 + 15 + 36} \right) = \left( {27 + 36} \right)\,\, \vdots \,\,9\) nên để A không chia hết cho $9$ thì $x$ không chia hết cho $9.$

      Câu 6 :

      Với $a,b$ là các số tự nhiên, nếu \(10a + b\) chia hết cho $13$ thì \(a + 4b\) chia hết cho số nào dưới đây?

      • A.

        \(3\)

      • B.

        \(5\)

      • C.

        \(26\)

      • D.

        \(13\)

      Đáp án : D

      Phương pháp giải :

      Nhân \(a + 4b\) với 10, biến đổi rồi chứng minh dựa vào TC1: Nếu số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó.

      Lời giải chi tiết :

      Xét \(10.\left( {a + 4.b} \right) = 10.a + 40.b \)\(= \left( {10.a + b} \right) + 39.b\) .

      Vì \(\left( {10.a + b} \right)\,\, \vdots \,\,13\) và \(39b\,\, \vdots \,\,13\) nên \(10.\left( {a + 4.b} \right)\,\, \vdots \,\,13\) .

      Do $10$ không chia hết cho $13$ nên suy ra \(\left( {a + 4.b} \right)\,\, \vdots \,\,13\) .

      Vậy nếu \(10a + b\) chia hết cho $13$ thì \(a + 4b\) chia hết cho $13.$

      Câu 7 :

      Có bao nhiêu số tự nhiên \(n\) để \(\left( {n + 7} \right) \vdots \left( {n + 2} \right)\) ?

      • A.

        \(3\)

      • B.

        \(2\)

      • C.

        \(1\)

      • D.

        \(0\)

      Đáp án : C

      Phương pháp giải :

      TC1: Nếu số hạng của một hiệu đều chia hết cho cùng một số thì hiệu chia hết cho số đó.

      Lời giải chi tiết :

      Vì \(\left( {n + 2} \right) \vdots \left( {n + 2} \right)\) nên theo tính chất 1 để \(\left( {n + 7} \right) \vdots \left( {n + 2} \right)\) thì \(\left[ {\left( {n + 7} \right) - \left( {n + 2} \right)} \right] \vdots \left( {n + 2} \right)\) hay \(5 \vdots \left( {n + 2} \right)\) .

      Suy ra \(\left( {n + 2} \right) \in \left\{ {1;5} \right\}\) .

      Vì \(n + 2 \ge 2\) nên \(n + 2 = 5 \Rightarrow n = 5 - 2 = 3.\)

      Vậy \(n = 3.\)

      Vậy có một số tự nhiên \(n\) thỏa mãn yêu cầu.

      Câu 8 :

      Chọn câu sai.

      • A.

        Tổng ba số tự nhiên liên tiếp chia hết cho \(3\)

      • B.

        Tổng bốn số tự nhiên liên tiếp không chia hết cho \(4\)

      • C.

        Tổng năm số tự nhiên chẵn liên tiếp chia hết cho \(10\)

      • D.

        Tổng bốn số tự nhiên liên tiếp chia hết cho \(4\)

      Đáp án : D

      Phương pháp giải :

      Sử dụng tính chất 1: “Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó” và tính chất 2: “Nếu chỉ có một số hạng của tổng không chia hết cho một số, còn các số hạng khác đều chia hết cho số đó thì tổng không chia hết cho số đó” để giải bài toán.

      Lời giải chi tiết :

      +) Gọi ba số tự nhiên liên tiếp là \(n;n + 1;n + 2\) $\left( {n \in N} \right)$ thì tổng ba số tự nhiên liên tiếp là \(n + n + 1 + n + 2 = 3n + 3\). Vì \(3 \vdots 3\) nên \(\left( {3n + 3} \right) \vdots 3\) suy ra A đúng.

      +) Gọi bốn số tự nhiên liên tiếp là \(n;n + 1;n + 2;n + 3\) $\left( {n \in N} \right)$ thì tổng bốn số tự nhiên liên tiếp là \(n + n + 1 + n + 2 + n + 4 = 4n + 7\). Vì $4 \vdots 3;\,7\not \vdots \,4$ nên \(\left( {4n + 7} \right)\not \vdots 4\) suy ra B đúng, D sai.

      +) Gọi năm số tự nhiên chẵn liên tiếp là \(2n;2n + 2;2n + 4;2n + 6;2n + 8\) $\left( {n \in N} \right)$ thì tổng năm số tự nhiên chẵn liên tiếp là \(2n + 2n + 2 + 2n + 4 + 2n + 6 + 2n + 8 = 10n + 20\). Vì $10 \vdots 10;\,20 \vdots 10$ nên \(\left( {10n + 20} \right) \vdots 10\) suy ra C đúng.

      Câu 9 :

      Khi chia số a cho 12 ta được số dư là 9. Khi đó:

      • A.

        a chia hết cho 4 nhưng không chia hết cho 3

      • B.

        a chia hết cho 3 nhưng không chia hết cho 4

      • C.

        a chia hết cho 5

      • D.

        a chia hết cho 9

      Đáp án : B

      Phương pháp giải :

      Sử dụng tính chất 1: “Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó” và tính chất 2: “Nếu chỉ có một số hạng của tổng không chia hết cho một số, còn các số hạng khác đều chia hết cho số đó thì tổng không chia hết cho số đó” để giải bài toán.

      Lời giải chi tiết :

      Vì a chia cho 12 được số dư là 9 nên \(a = 12k + 9\left( {k \in N} \right)\)

      Vì \(12k\, \vdots\, 3;9 \,\vdots \,3 \Rightarrow a = \left( {12k + 9} \right) \vdots\, 3\)

      Và \(12k\, \vdots \,4;9\) không chia hết cho 4 nên \(a = 12k + 9\) không chia hết cho 4.

      Vậy a chia hết cho 3 nhưng không chia hết cho 4.

      Câu 10 :

      Cho \(C = 1 + 3 + {3^2} + {3^3} + ... + {3^{11}}\) . Khi đó \(C\) chia hết cho số nào dưới đây?

      • A.

        \(9\)

      • B.

        \(11\)

      • C.

        \(13\)

      • D.

        \(12\)

      Đáp án : C

      Phương pháp giải :

      Tổng C có 12 số hạng nên nhóm ba số hạng liền nhau , biến đổi để chứng minh dựa vào tính chất : \(a \, \vdots \, m \Rightarrow a.k \, \vdots \, m \, (k \in \mathbb{N})\)

      Lời giải chi tiết :

      Ghép ba số hạng liên tiếp thành một nhóm , ta được

      \(C = 1 + 3 + {3^2} + {3^3} + ... + {3^{11}}\)\( = \left( {1 + 3 + {3^2}} \right) + \left( {{3^3} + {3^4} + {3^5}} \right)... + \left( {{3^9} + {3^{10}} + {3^{11}}} \right)\)

      \( = \left( {1 + 3 + {3^2}} \right) + {3^3}\left( {1 + 3 + {3^2}} \right) + ... + {3^9}\left( {1 + 3 + {3^2}} \right)\)\( = \left( {1 + 3 + {3^2}} \right)\left( {1 + {3^3} + {3^6} + {3^9}} \right)\)

      \( = 13.\left( {1 + {3^3} + {3^6} + {3^9}} \right) \, \vdots \, 13\) (do \(13 \, \vdots \, 13\))

      Vậy \(C \, \vdots \, 13.\)

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Trắc nghiệm Các dạng toán về chia hết và chia có dư, tính chất chia hết của một tổng Toán 6 Chân trời sáng tạo – nội dung then chốt trong chuyên mục toán 6 trên nền tảng toán math. Với bộ bài tập toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Bài viết liên quan

      Trắc nghiệm Các dạng toán về chia hết và chia có dư, tính chất chia hết của một tổng Toán 6 Chân trời sáng tạo

      Chủ đề chia hết và chia có dư là một trong những kiến thức cơ bản và quan trọng trong chương trình Toán 6. Việc nắm vững các khái niệm, định nghĩa và tính chất liên quan sẽ giúp học sinh giải quyết các bài toán một cách hiệu quả và chính xác.

      I. Khái niệm cơ bản về chia hết và chia có dư

      1. Chia hết: Số a chia hết cho số b (b ≠ 0) nếu có một số tự nhiên q sao cho a = b * q. Khi đó, a được gọi là số bị chia, b là số chia, q là thương.

      2. Chia có dư: Số a chia cho số b (b ≠ 0) được một thương q và một số dư r sao cho a = b * q + r, trong đó 0 ≤ r < b. Khi đó, a là số bị chia, b là số chia, q là thương, r là số dư.

      II. Tính chất chia hết của một tổng

      1. Tính chất 1: Nếu a chia hết cho m và b chia hết cho m thì (a + b) chia hết cho m.

      2. Tính chất 2: Nếu a chia hết cho m và b chia hết cho m thì (a - b) chia hết cho m.

      3. Tính chất 3: Nếu a chia hết cho m và b chia hết cho m thì (a * b) chia hết cho m.

      III. Các dạng bài tập trắc nghiệm thường gặp

      1. Dạng 1: Xác định một số có chia hết cho một số khác hay không.
      2. Dạng 2: Tìm số chia, số bị chia, thương hoặc số dư khi biết các yếu tố còn lại.
      3. Dạng 3: Sử dụng tính chất chia hết của một tổng để giải quyết các bài toán.
      4. Dạng 4: Bài toán ứng dụng thực tế liên quan đến chia hết và chia có dư.

      IV. Hướng dẫn giải một số bài tập trắc nghiệm minh họa

      Ví dụ 1: Số 12 có chia hết cho 3 không? Giải thích.

      Giải: Ta có 12 = 3 * 4. Vì 12 chia hết cho 3 mà không có số dư, nên 12 chia hết cho 3.

      Ví dụ 2: Một lớp học có 36 học sinh. Giáo viên muốn chia đều các học sinh thành các nhóm. Hỏi có thể chia thành bao nhiêu nhóm, mỗi nhóm có bao nhiêu học sinh?

      Giải: Các ước của 36 là: 1, 2, 3, 4, 6, 9, 12, 18, 36. Vậy có thể chia thành các nhóm với số lượng học sinh khác nhau tương ứng với các ước của 36.

      V. Luyện tập và củng cố kiến thức

      Để nắm vững kiến thức về chia hết và chia có dư, các em cần luyện tập thường xuyên với các bài tập trắc nghiệm khác nhau. Giaitoan.edu.vn cung cấp một hệ thống bài tập phong phú và đa dạng, giúp các em rèn luyện kỹ năng giải toán một cách hiệu quả.

      VI. Mở rộng kiến thức

      Ngoài các kiến thức cơ bản đã trình bày, các em có thể tìm hiểu thêm về các khái niệm liên quan như ước chung, bội chung, số nguyên tố, phân tích một số ra thừa số nguyên tố. Những kiến thức này sẽ giúp các em hiểu sâu hơn về số học và giải quyết các bài toán phức tạp hơn.

      VII. Kết luận

      Hy vọng rằng bộ đề trắc nghiệm này sẽ giúp các em học sinh lớp 6 Chân trời sáng tạo củng cố kiến thức và rèn luyện kỹ năng giải toán về chia hết và chia có dư. Chúc các em học tập tốt!

      Khái niệmĐịnh nghĩa
      Chia hếta chia hết cho b nếu a = b * q (q là số tự nhiên)
      Chia có dưa = b * q + r (0 ≤ r < b)
      Bảng tóm tắt các khái niệm cơ bản

      Tài liệu, đề thi và đáp án Toán 6