Chào mừng các em học sinh đến với bài kiểm tra trắc nghiệm về phép nhân hai số nguyên trong chương trình Toán 6 Chân trời sáng tạo. Bài trắc nghiệm này được thiết kế để giúp các em ôn tập và củng cố kiến thức đã học về phép nhân hai số nguyên, đồng thời rèn luyện kỹ năng giải bài tập một cách nhanh chóng và chính xác.
Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, kèm đáp án chi tiết, giúp các em tự đánh giá năng lực và chuẩn bị tốt nhất cho các bài kiểm tra trên lớp.
Tính \(\left( { - 42} \right).\left( { - 5} \right)\) được kết quả là:
\( - 210\)
\(210\)
\( - 47\)
\(37\)
Chọn câu sai.
$\left( { - 5} \right).25 = - 125$
$6.\left( { - 15} \right) = - 90$
$125.\left( { - 20} \right) = - 250$
$225.\left( { - 18} \right) = - 4050$
Chọn câu đúng.
\(\left( { - 20} \right).\left( { - 5} \right) = - 100\)
\(\left( { - 50} \right).\left( { - 12} \right) = 600\)
\(\left( { - 18} \right).25 = - 400\)
\(11.\left( { - 11} \right) = - 1111\)
Chọn câu trả lời đúng:
\( - 365.366 < 1\)
\( - 365.366 = 1\)
\( - 365.366 = - 1\)
\( - 365.366 > 1\)
Tích \(\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right)\) bằng
\({3^8}\)
\( - {3^7}\)
\({3^7}\)
\({\left( { - 3} \right)^8}\)
Tính nhanh $\left( { - 5} \right).125.\left( { - 8} \right).20.\left( { - 2} \right)$ ta được kết quả là
\( - 200000\)
\( - 2000000\)
\(200000\)
\( - 100000\)
Chọn câu đúng.
\(\left( { - 23} \right).\left( { - 16} \right) > 23.\left( { - 16} \right)\)
\(\left( { - 23} \right).\left( { - 16} \right) = 23.\left( { - 16} \right)\)
\(\left( { - 23} \right).\left( { - 16} \right) < 23.\left( { - 16} \right)\)
\(\left( { - 23} \right).16 > 23.\left( { - 6} \right)\)
Tính hợp lý \(A = - 43.18 - 82.43 - 43.100\)
\(0\)
\( - 86000\)
\( - 8600\)
\( - 4300\)
Cho $Q = - 135.17 - 121.17 - 256.\left( { - 17} \right)$, chọn câu đúng.
\( - 17\)
\(0\)
\(1700\)
\( - 1700\)
Cho \(\left( { - 4} \right).\left( {x - 3} \right) = 20.\) Tìm $x:$
\(8\)
\( - 5\)
\( - 2\)
Một kết quả khác
Tìm \(x \in Z\) biết \({\left( {1 - 3x} \right)^3} = - 8.\)
\(x = 1\)
\(x = - 1\)
\(x = - 2\)
Không có \(x\)
Công ty Ánh Dương có lợi nhuận ở mỗi tháng trong Quý I là – 30 triệu đồng. Trong Quý II, lợi nhuận mỗi tháng của công ty là 70 triệu đồng. Sau 6 tháng đầu năm, lợi nhuận của công ty Ánh Dương là?
+) Tích ba số nguyên âm là một số nguyên ..(1)..
+) Tích hai số nguyên âm với một số nguyên dương là một số nguyên …(2)…
Từ thích hợp để điền vào hai chỗ chấm trên lần lượt là:
Khẳng định nào sau đây đúng:
Lời giải và đáp án
Tính \(\left( { - 42} \right).\left( { - 5} \right)\) được kết quả là:
\( - 210\)
\(210\)
\( - 47\)
\(37\)
Đáp án : B
Áp dụng quy tắc nhân hai số nguyên cùng dấu: Khi nhân hai số nguyên cùng dấu ta được một số dương
Áp dụng quy tắc nhân hai số nguyên cùng dấu ta có:
\(\left( { - 42} \right).\left( { - 5} \right) = 42.5 = 210\)
Chọn câu sai.
$\left( { - 5} \right).25 = - 125$
$6.\left( { - 15} \right) = - 90$
$125.\left( { - 20} \right) = - 250$
$225.\left( { - 18} \right) = - 4050$
Đáp án : C
Tính toán các kết quả của từng đáp án rồi kết luận:
Muốn nhân hai số nguyên khác dấu, ta nhân hai giá trị tuyệt đối của chúng rồi đặt dấu $\left( - \right)$ trước kết quả nhận được.
Đáp án A: $\left( { - 5} \right).25 = - 125$ nên $A$ đúng.
Đáp án B: $6.\left( { - 15} \right) = - 90$ nên \(B\) đúng.
Đáp án C: $125.\left( { - 20} \right) = - 2500 \ne - 250$ nên \(C\) sai.
Đáp án D: $225.\left( { - 18} \right) = - 4050$ nên \(D\) đúng.
Chọn câu đúng.
\(\left( { - 20} \right).\left( { - 5} \right) = - 100\)
\(\left( { - 50} \right).\left( { - 12} \right) = 600\)
\(\left( { - 18} \right).25 = - 400\)
\(11.\left( { - 11} \right) = - 1111\)
Đáp án : B
Áp dụng quy tắc nhân hai số nguyên cùng dấu, khác dấu để tính kết quả của từng đáp án và kết luận.
Đáp án A: \(\left( { - 20} \right).\left( { - 5} \right) = 100\) nên \(A\) sai.
Đáp án B: \(\left( { - 50} \right).\left( { - 12} \right) = 600\) nên \(B\) đúng.
Đáp án C: \(\left( { - 18} \right).25 = - 450 \ne - 400\) nên \(C\) sai.
Đáp án D: \(11.\left( { - 11} \right) = - 121 \ne - 1111\) nên \(D\) sai.
Chọn câu trả lời đúng:
\( - 365.366 < 1\)
\( - 365.366 = 1\)
\( - 365.366 = - 1\)
\( - 365.366 > 1\)
Đáp án : A
Áp dụng quy tắc nhân hai số nguyên khác dấu: Khi nhân hai số nguyên khác dấu ta được một số âm
Áp dụng quy tắc nhân hai số nguyên khác dấu ta có:
\( - 365.366 < 0 < 1\) và \( - 365.366 \ne - 1\)
Tích \(\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right)\) bằng
\({3^8}\)
\( - {3^7}\)
\({3^7}\)
\({\left( { - 3} \right)^8}\)
Đáp án : B
Sử dụng định nghĩa lũy thừa số mũ tự nhiên: \({a^n} = a.a...a\) (\(n\) thừa số \(a\)) với \(a \ne 0\)
Chú ý: Với \(a > 0\) và \(n \in N\) thì \({\left( { - a} \right)^n} = \left\{ \begin{array}{l}{a^n}\,\,\,\,\,khi\,n = 2k\\ - {a^n}\,khi\,n = 2k + 1\end{array} \right.\) với $ k \in N^*$
Ta có:
\(\begin{array}{l}\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right)\\ = {\left( { - 3} \right)^7} = - {3^7}\end{array}\)
Tính nhanh $\left( { - 5} \right).125.\left( { - 8} \right).20.\left( { - 2} \right)$ ta được kết quả là
\( - 200000\)
\( - 2000000\)
\(200000\)
\( - 100000\)
Đáp án : A
Nhóm các cặp có tích là số tròn chục, tròn trăm, tròn nghìn... để tính nhanh.
$\begin{array}{l}\left( { - 5} \right).125.\left( { - 8} \right).20.\left( { - 2} \right)\\ = \left[ {125.\left( { - 8} \right)} \right].\left[ {\left( { - 5} \right).20} \right].\left( { - 2} \right)\\ = - \left( {125.8} \right).\left[ { - \left( {5.20} \right)} \right].\left( { - 2} \right)\\ = \left( { - 1000} \right).\left( { - 100} \right).\left( { - 2} \right)\\ = 100000.\left( { - 2} \right) = - 200000\end{array}$
Chọn câu đúng.
\(\left( { - 23} \right).\left( { - 16} \right) > 23.\left( { - 16} \right)\)
\(\left( { - 23} \right).\left( { - 16} \right) = 23.\left( { - 16} \right)\)
\(\left( { - 23} \right).\left( { - 16} \right) < 23.\left( { - 16} \right)\)
\(\left( { - 23} \right).16 > 23.\left( { - 6} \right)\)
Đáp án : A
So sánh các vế ở mỗi đáp án bằng cách nhận xét tính dương, âm của các tích.
Đáp án A: \(\left( { - 23} \right).\left( { - 16} \right) > 23.\left( { - 16} \right)\) đúng vì \(VT > 0,VP < 0\)
Đáp án B: \(\left( { - 23} \right).\left( { - 16} \right) = 23.\left( { - 16} \right)\) sai vì \(VT > 0,VP < 0\) nên \(VT \ne VP\)
Đáp án C: \(\left( { - 23} \right).\left( { - 16} \right) < 23.\left( { - 16} \right)\) sai vì \(VT > 0,VP < 0\) nên \(VT > VP\)
Đáp án D: \(\left( { - 23} \right).16 > 23.\left( { - 6} \right)\) sai vì:
\(\left( { - 23} \right).16 = - 368\) và \(23.\left( { - 6} \right) = - 138\) mà \( - 368 < - 138\) nên \(\left( { - 23} \right).16 < 23.\left( { - 6} \right)\)
Tính hợp lý \(A = - 43.18 - 82.43 - 43.100\)
\(0\)
\( - 86000\)
\( - 8600\)
\( - 4300\)
Đáp án : C
Sử dụng tính chất phân phối của phép nhân đối với phép trừ:
$a.b - a.c = a.\left( {b - c} \right)$.
\(\begin{array}{l}A = - 43.18 - 82.43 - 43.100\\A = 43.\left( { - 18 - 82 - 100} \right)\\A = 43.\left[ { - \left( {18 + 82 + 100} \right)} \right]\\A = 43.\left( { - 200} \right)\\A = - 8600\end{array}\)
Cho $Q = - 135.17 - 121.17 - 256.\left( { - 17} \right)$, chọn câu đúng.
\( - 17\)
\(0\)
\(1700\)
\( - 1700\)
Đáp án : B
Sử dụng tính chất phân phối của phép nhân: $a.b - a.c - a.d = a.\left( {b - c - d} \right)$
$\begin{array}{l}Q = - 135.17 - 121.17 - 256.\left( { - 17} \right)\\Q = - 135.17 - 121.17 + 256.17\\Q = 17.\left( { - 135 - 121 + 256} \right)\\Q = 17.\left( { - 256 + 256} \right)\\Q = 17.0\\Q = 0\end{array}$
Cho \(\left( { - 4} \right).\left( {x - 3} \right) = 20.\) Tìm $x:$
\(8\)
\( - 5\)
\( - 2\)
Một kết quả khác
Đáp án : C
+ Sử dụng quy tắc nhân hai số nguyên cùng dấu để tìm ra giá trị của \(x - 3\)
+ Sau đó áp dụng quy tắc chuyển vế và tính chất tổng đại số để tìm $x.$
Vì \(\left( { - 4} \right).\left( { - 5} \right) = 4.5 = 20\) nên để \(\left( { - 4} \right).\left( {x - 3} \right) = 20\) thì \(x - 3 = - 5\)
Khi đó ta có:
\(\begin{array}{l}x - 3 = - 5\\x = - 5 + 3\\x = - 2\end{array}\)
Vậy \(x = - 2\).
Tìm \(x \in Z\) biết \({\left( {1 - 3x} \right)^3} = - 8.\)
\(x = 1\)
\(x = - 1\)
\(x = - 2\)
Không có \(x\)
Đáp án : A
- Đưa vế phải về dạng lũy thừa bậc ba.
- Sử dụng so sánh lũy thừa bậc lẻ:
Nếu \(n\) lẻ và \({a^n} = {b^n}\) thì \(a = b\)
\(\begin{array}{l}{\left( {1 - 3x} \right)^3} = - 8\\{\left( {1 - 3x} \right)^3} = {\left( { - 2} \right)^3}\\1 - 3x = - 2\\3x = 1 - \left( { - 2} \right)\\3x = 3\\x = 3:3\\x = 1\end{array}\)
Vậy \(x=1\)
Công ty Ánh Dương có lợi nhuận ở mỗi tháng trong Quý I là – 30 triệu đồng. Trong Quý II, lợi nhuận mỗi tháng của công ty là 70 triệu đồng. Sau 6 tháng đầu năm, lợi nhuận của công ty Ánh Dương là?
Đáp án : A
Một quý gồm 3 tháng.
Tính lợi nhuận quý II: Lấy lợi nhuận mỗi tháng quý này nhân với 3.
Lợi nhuận 6 tháng đầu năm bằng lợi nhuận quý I cộng lợi nhuận quý II.
* Lợi nhuận Quý I là \((- 30) . 3 = - 90\) triệu đồng.
* Lợi nhuận Quý II là \(70 . 3 = 210\) triệu đồng.
Sau 6 tháng đầu năm, lợi nhuận của công ty Ánh Dương là: \((- 90) + 210 = 120\) triệu đồng.
+) Tích ba số nguyên âm là một số nguyên ..(1)..
+) Tích hai số nguyên âm với một số nguyên dương là một số nguyên …(2)…
Từ thích hợp để điền vào hai chỗ chấm trên lần lượt là:
Đáp án : C
- Tích của hai số nguyên trái dấu là số nguyên âm.
- Tính của hai số nguyên cùng dấu là số nguyên dương.
Tích ba số nguyên âm là một số nguyên âm.
Tích hai số nguyên âm với một số nguyên dương là một số nguyên dương
Khẳng định nào sau đây đúng:
Đáp án : B
- Sử dụng quy tắc: Tích của lẻ các số âm là một số âm
- Sử dụng tính chất: đổi chỗ hai thừa số bất kì trong một tích để tính nhanh.
\(( - 2).( - 3).4.( - 5) = ( - 2).( - 5).( - 3).4 = 10.\left( { - 12} \right) = - 120 < 0\)
Bài 4 trong chương trình Toán 6 Chân trời sáng tạo tập trung vào việc nắm vững quy tắc phép nhân hai số nguyên, bao gồm cả số nguyên dương và số nguyên âm. Việc hiểu rõ quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Để làm tốt bài trắc nghiệm, trước hết chúng ta cần ôn lại quy tắc phép nhân hai số nguyên:
Các bài trắc nghiệm về phép nhân hai số nguyên thường xuất hiện dưới các dạng sau:
Để giải nhanh các bài tập trắc nghiệm về phép nhân hai số nguyên, các em có thể áp dụng một số mẹo sau:
Ví dụ 1: Tính (-4) * (+6)
Giải: Vì hai số nguyên khác dấu nên tích là một số nguyên âm. (-4) * (+6) = -24
Ví dụ 2: Xác định dấu của tích (-7) * (-9)
Giải: Vì hai số nguyên cùng dấu nên tích là một số nguyên dương.
Để củng cố kiến thức và rèn luyện kỹ năng, các em hãy làm các bài trắc nghiệm sau:
Câu hỏi | Đáp án |
---|---|
Tính: (+5) * (-3) | -15 |
Tính: (-2) * (-8) | +16 |
Tìm x: x * (-4) = 12 | x = -3 |
Hi vọng rằng bài viết này đã giúp các em hiểu rõ hơn về phép nhân hai số nguyên và có thể tự tin làm các bài trắc nghiệm. Hãy luyện tập thường xuyên để nắm vững kiến thức và đạt kết quả tốt nhất trong học tập!