Bài tập trắc nghiệm này được thiết kế để giúp học sinh lớp 6 ôn luyện và củng cố kiến thức về tính chất cơ bản của phân số trong chương trình Toán 6 Chân trời sáng tạo.
Với các câu hỏi đa dạng, bám sát nội dung sách giáo khoa, các em sẽ có cơ hội rèn luyện kỹ năng giải toán và tự đánh giá năng lực của mình.
Chọn câu sai. Với \(a;b;m \in Z;b;m \ne 0\) thì
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\,\)
\(\dfrac{a}{b} = \dfrac{{a + m}}{{b + m}}\,\)
\(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\,\)
\(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n }}\) với \(n\) là ước chung của \(a;b.\)
Phân số \(\dfrac{a}{b}\) là phân số tối giản khi ƯC\(\left( {a;b} \right)\) bằng
$\left\{ {1; - 1} \right\}$
\(\left\{ 2 \right\}\)
\(\left\{ {1;2} \right\}\)
\(\left\{ {1;2;3} \right\}\)
Tìm số \(a;b\) biết \(\dfrac{{24}}{{56}} = \dfrac{a}{7} = \dfrac{{ - 111}}{b}\)
\(a = 3,b = - 259\)
\(a = - 3,b = - 259\)
\(a = 3,b = 259\)
\(a = - 3,b = 259\)
Tìm \(x\) biết \(\dfrac{{2323}}{{3232}} = \dfrac{x}{{32}}.\)
\(101\)
\(32\)
\( - 23\)
\(23\)
Tìm \(x\) biết \(\dfrac{{ - 5}}{{ - 14}} = \dfrac{{20}}{{6 - 5x}}\)
\(x=10\)
\( x=- 10\)
\(x=5\)
\(x=6\)
Phân số \(\dfrac{{ - m}}{{ - n}};\,\,n,m \in \mathbb{Z};n \ne 0\) bằng phân số nào sau đây
\(\dfrac{m}{n}\)
\(\dfrac{n}{m}\)
\(\dfrac{{ - n}}{m}\)
\(\dfrac{m}{{ - n}}\)
Quy đồng mẫu số hai phân số \(\dfrac{2}{7};\dfrac{5}{{ - 8}}\)được hai phân số lần lượt là:
\(\dfrac{{16}}{{56}};\dfrac{{ - 35}}{{56}}\)
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{56}}\)
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{ - 56}}\)
\(\dfrac{{ - 16}}{{56}};\dfrac{{ - 35}}{{56}}\)
Mẫu số chung của các phân số \(\dfrac{2}{5};\dfrac{{23}}{{18}};\dfrac{5}{{75}}\) là
$180$
\(500\)
\(750\)
\(450\)
Mẫu chung nguyên dương nhỏ nhất của các phân số \(\dfrac{{19}}{{{3^2}.7.11}};\dfrac{{23}}{{{3^3}{{.7}^2}.19}}\) là:
\({3^3}{.7^2}\)
\({3^3}{.7^3}.11.19\)
\({3^2}{.7^2}.11.19\)
\({3^3}{.7^2}.11.19\)
Rút gọn phân số \(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}}\) về dạng phân số tối giản ta được phân số có tử số là
\(\dfrac{4}{9}\)
\(31\)
\( - 1\)
\(4\)
Phân số bằng phân số \(\dfrac{{301}}{{403}}\) mà có tử số và mẫu số đều là số dương, có ba chữ số là phân số nào?
\(\dfrac{{151}}{{201}}\)
\(\dfrac{{602}}{{806}}\)
\(\dfrac{{301}}{{304}}\)
\(\dfrac{{903}}{{1209}}\)
Lời giải và đáp án
Chọn câu sai. Với \(a;b;m \in Z;b;m \ne 0\) thì
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\,\)
\(\dfrac{a}{b} = \dfrac{{a + m}}{{b + m}}\,\)
\(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\,\)
\(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n }}\) với \(n\) là ước chung của \(a;b.\)
Đáp án : B
Áp dụng tính chất cơ bản của phân số
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\).
Dựa vào các tính chất cơ bản của phân số:
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\) và \(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\) thì các đáp án A, C, D đều đúng.
Đáp án B sai.
Phân số \(\dfrac{a}{b}\) là phân số tối giản khi ƯC\(\left( {a;b} \right)\) bằng
$\left\{ {1; - 1} \right\}$
\(\left\{ 2 \right\}\)
\(\left\{ {1;2} \right\}\)
\(\left\{ {1;2;3} \right\}\)
Đáp án : A
Phân số tối giản (hay phân số không rút gọn được nữa) là phân số mà cả tử và mẫu chỉ có ước chung là $1$ và $ - 1.$
Tìm số \(a;b\) biết \(\dfrac{{24}}{{56}} = \dfrac{a}{7} = \dfrac{{ - 111}}{b}\)
\(a = 3,b = - 259\)
\(a = - 3,b = - 259\)
\(a = 3,b = 259\)
\(a = - 3,b = 259\)
Đáp án : A
Sử dụng tính chất của phân số:
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\)
Ta có:
\(\dfrac{{24}}{{56}} = \dfrac{{24:8}}{{56:8}} = \dfrac{3}{7} = \dfrac{a}{7} \Rightarrow a = 3\)
\(\dfrac{3}{7} = \dfrac{{3.\left( { - 37} \right)}}{{7.\left( { - 37} \right)}} = \dfrac{{ - 111}}{{ - 259}} = \dfrac{{ - 111}}{b} \Rightarrow b = - 259\)
Vậy \(a = 3,b = - 259\)
Tìm \(x\) biết \(\dfrac{{2323}}{{3232}} = \dfrac{x}{{32}}.\)
\(101\)
\(32\)
\( - 23\)
\(23\)
Đáp án : D
Rút gọn phân số đã cho: Chia cả tử và mẫu của phân số $\dfrac{a}{b}$ cho ƯCLN của $\left| a \right|$ và $\left| b \right|$ để rút gọn phân số tối giản.
Ta có: \(\dfrac{{2323}}{{3232}} = \dfrac{{2323:101}}{{3232:101}}\)\( = \dfrac{{23}}{{32}} = \dfrac{x}{{32}} \Rightarrow x = 23\)
Tìm \(x\) biết \(\dfrac{{ - 5}}{{ - 14}} = \dfrac{{20}}{{6 - 5x}}\)
\(x=10\)
\( x=- 10\)
\(x=5\)
\(x=6\)
Đáp án : B
Áp dụng tính chất: Nhân cả tử và mẫu của phân số với một số nguyên khác \( \pm 1\) ta được phân số mới bằng phân số đã cho.
Biến đổi để hai vế là hai phân số có cùng tử số, từ đó cho hai mẫu số bằng nhau ta tìm được \(x.\)
Ta có:
\(\dfrac{{ - 5}}{{ - 14}} = \dfrac{{\left( { - 5} \right).\left( { - 4} \right)}}{{\left( { - 14} \right).\left( { - 4} \right)}} = \dfrac{{20}}{{56}} = \dfrac{{20}}{{6 - 5x}}\)
\(\begin{array}{l} \Rightarrow 56 = 6 - 5x\\56 - 6 = - 5x\\50 = - 5x\\x = 50:\left( { - 5} \right)\\x = - 10\end{array}\)
Phân số \(\dfrac{{ - m}}{{ - n}};\,\,n,m \in \mathbb{Z};n \ne 0\) bằng phân số nào sau đây
\(\dfrac{m}{n}\)
\(\dfrac{n}{m}\)
\(\dfrac{{ - n}}{m}\)
\(\dfrac{m}{{ - n}}\)
Đáp án : A
Ta có: \(\dfrac{{ - m}}{{ - n}} = \dfrac{m}{n}\)
Quy đồng mẫu số hai phân số \(\dfrac{2}{7};\dfrac{5}{{ - 8}}\)được hai phân số lần lượt là:
\(\dfrac{{16}}{{56}};\dfrac{{ - 35}}{{56}}\)
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{56}}\)
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{ - 56}}\)
\(\dfrac{{ - 16}}{{56}};\dfrac{{ - 35}}{{56}}\)
Đáp án : A
Đưa các phân số về có mẫu dương hết rồi quy đồng mẫu số các phân số.
+) Tìm $MSC$ (thường là $BCNN$ của các mẫu).
+) Tìm thừa số phụ $ = {\rm{ }}MSC{\rm{ }}:{\rm{ }}MS$
+) Nhân cả tử và mẫu với thừa số phụ tương ứng
Ta quy đồng \(\dfrac{2}{7}\) và \(\dfrac{{ - 5}}{8}\) (\(MSC:56\))
\(\dfrac{2}{7} = \dfrac{{2.8}}{{7.8}} = \dfrac{{16}}{{56}};\) \(\dfrac{{ - 5}}{8} = \dfrac{{ - 5.7}}{{8.7}} = \dfrac{{ - 35}}{{56}}\)
Mẫu số chung của các phân số \(\dfrac{2}{5};\dfrac{{23}}{{18}};\dfrac{5}{{75}}\) là
$180$
\(500\)
\(750\)
\(450\)
Đáp án : D
- Phân tích các mẫu số thành tích các thừa số nguyên tố.
- \(MSC\) được chọn thường là \(BCNN\) của các mẫu số.
Ta có:
\(\begin{array}{l}5 = 5.1\\18 = {2.3^2}\\75 = {3.5^2}\end{array}\)
\( \Rightarrow BCNN\left( {5;18;75} \right) = {2.3^2}{.5^2} = 450\)
Vậy ta có thể chọn một mẫu chung là \(450\)
Mẫu chung nguyên dương nhỏ nhất của các phân số \(\dfrac{{19}}{{{3^2}.7.11}};\dfrac{{23}}{{{3^3}{{.7}^2}.19}}\) là:
\({3^3}{.7^2}\)
\({3^3}{.7^3}.11.19\)
\({3^2}{.7^2}.11.19\)
\({3^3}{.7^2}.11.19\)
Đáp án : D
Mẫu chung nguyên dương nhỏ nhất của các phân số là \(BCNN\) của các mẫu.
\({{{3^2}.7.11}}\) và \({{{3^3}{{.7}^2}.19}}\) có thừa số nguyên tố chung là 3, 7, thừa số nguyên tố riêng là 11, 19.
Số mũ lớn nhất của 3 là 3, số mũ lớn nhất của 7 là 2.
Do đó BCNN(\({{{3^2}.7.11}};{{{3^3}{{.7}^2}.19}}\)) = \({3^3}{.7^2}.11.19\)
Vậy mẫu chung nguyên dương nhỏ nhất của hai mẫu đã cho là \({3^3}{.7^2}.11.19\)
Rút gọn phân số \(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}}\) về dạng phân số tối giản ta được phân số có tử số là
\(\dfrac{4}{9}\)
\(31\)
\( - 1\)
\(4\)
Đáp án : D
- Tính tử và mẫu của phân số đã cho và rút gọn phân số đó.
Ta có:
\(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}} = \dfrac{{ - 6 + 30}}{{54}}\) \( = \dfrac{{24}}{{54}} = \dfrac{{24:6}}{{54:6}} = \dfrac{4}{9}\)
Vậy tử số của phân số cần tìm là \(4\)
Phân số bằng phân số \(\dfrac{{301}}{{403}}\) mà có tử số và mẫu số đều là số dương, có ba chữ số là phân số nào?
\(\dfrac{{151}}{{201}}\)
\(\dfrac{{602}}{{806}}\)
\(\dfrac{{301}}{{304}}\)
\(\dfrac{{903}}{{1209}}\)
Đáp án : B
Ta nhân cả tử và mẫu của phân số đã cho với một số tự nhiên thích hợp \(\left( { \ne 1} \right)\) để thu được phân số cần tìm.
Ta có:
\( + )\dfrac{{301}}{{403}} = \dfrac{{301.2}}{{403.2}} = \dfrac{{602}}{{806}}\left( {TM} \right)\)
\( + )\dfrac{{301}}{{403}} = \dfrac{{301.3}}{{403.3}} = \dfrac{{903}}{{1209}}\left( L \right)\)
Do đó ở các trường hợp nhân cả tử và mẫu với một số tự nhiên lớn hơn \(3\) ta cũng đều loại được.
Ngoài ra phân số \(\dfrac{{301}}{{403}}\) tối giản nên không thể rút gọn được.
Vậy phân số cần tìm là \(\dfrac{{602}}{{806}}\)
Chọn câu sai. Với \(a;b;m \in Z;b;m \ne 0\) thì
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\,\)
\(\dfrac{a}{b} = \dfrac{{a + m}}{{b + m}}\,\)
\(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\,\)
\(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n }}\) với \(n\) là ước chung của \(a;b.\)
Phân số \(\dfrac{a}{b}\) là phân số tối giản khi ƯC\(\left( {a;b} \right)\) bằng
$\left\{ {1; - 1} \right\}$
\(\left\{ 2 \right\}\)
\(\left\{ {1;2} \right\}\)
\(\left\{ {1;2;3} \right\}\)
Tìm số \(a;b\) biết \(\dfrac{{24}}{{56}} = \dfrac{a}{7} = \dfrac{{ - 111}}{b}\)
\(a = 3,b = - 259\)
\(a = - 3,b = - 259\)
\(a = 3,b = 259\)
\(a = - 3,b = 259\)
Tìm \(x\) biết \(\dfrac{{2323}}{{3232}} = \dfrac{x}{{32}}.\)
\(101\)
\(32\)
\( - 23\)
\(23\)
Tìm \(x\) biết \(\dfrac{{ - 5}}{{ - 14}} = \dfrac{{20}}{{6 - 5x}}\)
\(x=10\)
\( x=- 10\)
\(x=5\)
\(x=6\)
Phân số \(\dfrac{{ - m}}{{ - n}};\,\,n,m \in \mathbb{Z};n \ne 0\) bằng phân số nào sau đây
\(\dfrac{m}{n}\)
\(\dfrac{n}{m}\)
\(\dfrac{{ - n}}{m}\)
\(\dfrac{m}{{ - n}}\)
Quy đồng mẫu số hai phân số \(\dfrac{2}{7};\dfrac{5}{{ - 8}}\)được hai phân số lần lượt là:
\(\dfrac{{16}}{{56}};\dfrac{{ - 35}}{{56}}\)
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{56}}\)
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{ - 56}}\)
\(\dfrac{{ - 16}}{{56}};\dfrac{{ - 35}}{{56}}\)
Mẫu số chung của các phân số \(\dfrac{2}{5};\dfrac{{23}}{{18}};\dfrac{5}{{75}}\) là
$180$
\(500\)
\(750\)
\(450\)
Mẫu chung nguyên dương nhỏ nhất của các phân số \(\dfrac{{19}}{{{3^2}.7.11}};\dfrac{{23}}{{{3^3}{{.7}^2}.19}}\) là:
\({3^3}{.7^2}\)
\({3^3}{.7^3}.11.19\)
\({3^2}{.7^2}.11.19\)
\({3^3}{.7^2}.11.19\)
Rút gọn phân số \(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}}\) về dạng phân số tối giản ta được phân số có tử số là
\(\dfrac{4}{9}\)
\(31\)
\( - 1\)
\(4\)
Phân số bằng phân số \(\dfrac{{301}}{{403}}\) mà có tử số và mẫu số đều là số dương, có ba chữ số là phân số nào?
\(\dfrac{{151}}{{201}}\)
\(\dfrac{{602}}{{806}}\)
\(\dfrac{{301}}{{304}}\)
\(\dfrac{{903}}{{1209}}\)
Chọn câu sai. Với \(a;b;m \in Z;b;m \ne 0\) thì
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\,\)
\(\dfrac{a}{b} = \dfrac{{a + m}}{{b + m}}\,\)
\(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\,\)
\(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n }}\) với \(n\) là ước chung của \(a;b.\)
Đáp án : B
Áp dụng tính chất cơ bản của phân số
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\).
Dựa vào các tính chất cơ bản của phân số:
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\) và \(\dfrac{a}{b} = \dfrac{{ - a}}{{ - b}}\) thì các đáp án A, C, D đều đúng.
Đáp án B sai.
Phân số \(\dfrac{a}{b}\) là phân số tối giản khi ƯC\(\left( {a;b} \right)\) bằng
$\left\{ {1; - 1} \right\}$
\(\left\{ 2 \right\}\)
\(\left\{ {1;2} \right\}\)
\(\left\{ {1;2;3} \right\}\)
Đáp án : A
Phân số tối giản (hay phân số không rút gọn được nữa) là phân số mà cả tử và mẫu chỉ có ước chung là $1$ và $ - 1.$
Tìm số \(a;b\) biết \(\dfrac{{24}}{{56}} = \dfrac{a}{7} = \dfrac{{ - 111}}{b}\)
\(a = 3,b = - 259\)
\(a = - 3,b = - 259\)
\(a = 3,b = 259\)
\(a = - 3,b = 259\)
Đáp án : A
Sử dụng tính chất của phân số:
\(\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}\) với \(m \in Z\) và \(m \ne 0\); \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\)với \(n \in \) ƯC\(\left( {a;b} \right)\)
Ta có:
\(\dfrac{{24}}{{56}} = \dfrac{{24:8}}{{56:8}} = \dfrac{3}{7} = \dfrac{a}{7} \Rightarrow a = 3\)
\(\dfrac{3}{7} = \dfrac{{3.\left( { - 37} \right)}}{{7.\left( { - 37} \right)}} = \dfrac{{ - 111}}{{ - 259}} = \dfrac{{ - 111}}{b} \Rightarrow b = - 259\)
Vậy \(a = 3,b = - 259\)
Tìm \(x\) biết \(\dfrac{{2323}}{{3232}} = \dfrac{x}{{32}}.\)
\(101\)
\(32\)
\( - 23\)
\(23\)
Đáp án : D
Rút gọn phân số đã cho: Chia cả tử và mẫu của phân số $\dfrac{a}{b}$ cho ƯCLN của $\left| a \right|$ và $\left| b \right|$ để rút gọn phân số tối giản.
Ta có: \(\dfrac{{2323}}{{3232}} = \dfrac{{2323:101}}{{3232:101}}\)\( = \dfrac{{23}}{{32}} = \dfrac{x}{{32}} \Rightarrow x = 23\)
Tìm \(x\) biết \(\dfrac{{ - 5}}{{ - 14}} = \dfrac{{20}}{{6 - 5x}}\)
\(x=10\)
\( x=- 10\)
\(x=5\)
\(x=6\)
Đáp án : B
Áp dụng tính chất: Nhân cả tử và mẫu của phân số với một số nguyên khác \( \pm 1\) ta được phân số mới bằng phân số đã cho.
Biến đổi để hai vế là hai phân số có cùng tử số, từ đó cho hai mẫu số bằng nhau ta tìm được \(x.\)
Ta có:
\(\dfrac{{ - 5}}{{ - 14}} = \dfrac{{\left( { - 5} \right).\left( { - 4} \right)}}{{\left( { - 14} \right).\left( { - 4} \right)}} = \dfrac{{20}}{{56}} = \dfrac{{20}}{{6 - 5x}}\)
\(\begin{array}{l} \Rightarrow 56 = 6 - 5x\\56 - 6 = - 5x\\50 = - 5x\\x = 50:\left( { - 5} \right)\\x = - 10\end{array}\)
Phân số \(\dfrac{{ - m}}{{ - n}};\,\,n,m \in \mathbb{Z};n \ne 0\) bằng phân số nào sau đây
\(\dfrac{m}{n}\)
\(\dfrac{n}{m}\)
\(\dfrac{{ - n}}{m}\)
\(\dfrac{m}{{ - n}}\)
Đáp án : A
Ta có: \(\dfrac{{ - m}}{{ - n}} = \dfrac{m}{n}\)
Quy đồng mẫu số hai phân số \(\dfrac{2}{7};\dfrac{5}{{ - 8}}\)được hai phân số lần lượt là:
\(\dfrac{{16}}{{56}};\dfrac{{ - 35}}{{56}}\)
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{56}}\)
\(\dfrac{{16}}{{56}};\dfrac{{35}}{{ - 56}}\)
\(\dfrac{{ - 16}}{{56}};\dfrac{{ - 35}}{{56}}\)
Đáp án : A
Đưa các phân số về có mẫu dương hết rồi quy đồng mẫu số các phân số.
+) Tìm $MSC$ (thường là $BCNN$ của các mẫu).
+) Tìm thừa số phụ $ = {\rm{ }}MSC{\rm{ }}:{\rm{ }}MS$
+) Nhân cả tử và mẫu với thừa số phụ tương ứng
Ta quy đồng \(\dfrac{2}{7}\) và \(\dfrac{{ - 5}}{8}\) (\(MSC:56\))
\(\dfrac{2}{7} = \dfrac{{2.8}}{{7.8}} = \dfrac{{16}}{{56}};\) \(\dfrac{{ - 5}}{8} = \dfrac{{ - 5.7}}{{8.7}} = \dfrac{{ - 35}}{{56}}\)
Mẫu số chung của các phân số \(\dfrac{2}{5};\dfrac{{23}}{{18}};\dfrac{5}{{75}}\) là
$180$
\(500\)
\(750\)
\(450\)
Đáp án : D
- Phân tích các mẫu số thành tích các thừa số nguyên tố.
- \(MSC\) được chọn thường là \(BCNN\) của các mẫu số.
Ta có:
\(\begin{array}{l}5 = 5.1\\18 = {2.3^2}\\75 = {3.5^2}\end{array}\)
\( \Rightarrow BCNN\left( {5;18;75} \right) = {2.3^2}{.5^2} = 450\)
Vậy ta có thể chọn một mẫu chung là \(450\)
Mẫu chung nguyên dương nhỏ nhất của các phân số \(\dfrac{{19}}{{{3^2}.7.11}};\dfrac{{23}}{{{3^3}{{.7}^2}.19}}\) là:
\({3^3}{.7^2}\)
\({3^3}{.7^3}.11.19\)
\({3^2}{.7^2}.11.19\)
\({3^3}{.7^2}.11.19\)
Đáp án : D
Mẫu chung nguyên dương nhỏ nhất của các phân số là \(BCNN\) của các mẫu.
\({{{3^2}.7.11}}\) và \({{{3^3}{{.7}^2}.19}}\) có thừa số nguyên tố chung là 3, 7, thừa số nguyên tố riêng là 11, 19.
Số mũ lớn nhất của 3 là 3, số mũ lớn nhất của 7 là 2.
Do đó BCNN(\({{{3^2}.7.11}};{{{3^3}{{.7}^2}.19}}\)) = \({3^3}{.7^2}.11.19\)
Vậy mẫu chung nguyên dương nhỏ nhất của hai mẫu đã cho là \({3^3}{.7^2}.11.19\)
Rút gọn phân số \(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}}\) về dạng phân số tối giản ta được phân số có tử số là
\(\dfrac{4}{9}\)
\(31\)
\( - 1\)
\(4\)
Đáp án : D
- Tính tử và mẫu của phân số đã cho và rút gọn phân số đó.
Ta có:
\(\dfrac{{\left( { - 2} \right).3 + 6.5}}{{9.6}} = \dfrac{{ - 6 + 30}}{{54}}\) \( = \dfrac{{24}}{{54}} = \dfrac{{24:6}}{{54:6}} = \dfrac{4}{9}\)
Vậy tử số của phân số cần tìm là \(4\)
Phân số bằng phân số \(\dfrac{{301}}{{403}}\) mà có tử số và mẫu số đều là số dương, có ba chữ số là phân số nào?
\(\dfrac{{151}}{{201}}\)
\(\dfrac{{602}}{{806}}\)
\(\dfrac{{301}}{{304}}\)
\(\dfrac{{903}}{{1209}}\)
Đáp án : B
Ta nhân cả tử và mẫu của phân số đã cho với một số tự nhiên thích hợp \(\left( { \ne 1} \right)\) để thu được phân số cần tìm.
Ta có:
\( + )\dfrac{{301}}{{403}} = \dfrac{{301.2}}{{403.2}} = \dfrac{{602}}{{806}}\left( {TM} \right)\)
\( + )\dfrac{{301}}{{403}} = \dfrac{{301.3}}{{403.3}} = \dfrac{{903}}{{1209}}\left( L \right)\)
Do đó ở các trường hợp nhân cả tử và mẫu với một số tự nhiên lớn hơn \(3\) ta cũng đều loại được.
Ngoài ra phân số \(\dfrac{{301}}{{403}}\) tối giản nên không thể rút gọn được.
Vậy phân số cần tìm là \(\dfrac{{602}}{{806}}\)
Bài 2 trong chương trình Toán 6 Chân trời sáng tạo tập trung vào việc nắm vững các tính chất cơ bản của phân số. Hiểu rõ những tính chất này là nền tảng quan trọng để giải quyết các bài toán liên quan đến phân số một cách hiệu quả. Bài viết này sẽ cung cấp một bộ trắc nghiệm chi tiết, bao gồm các dạng bài tập khác nhau, giúp học sinh lớp 6 rèn luyện và củng cố kiến thức.
Trước khi bắt đầu với các bài tập trắc nghiệm, chúng ta cùng nhắc lại các tính chất cơ bản của phân số:
Các bài tập trắc nghiệm sẽ bao gồm các dạng sau:
Câu 1: Phân số nào sau đây bằng phân số 2/3?
Đáp án: a) 4/6
Câu 2: Rút gọn phân số 12/18 ta được phân số nào?
Đáp án: a) 2/3
Câu 3: Quy đồng mẫu số các phân số 1/2 và 2/3 ta được:
Đáp án: a) 3/6 và 4/6
Câu 4: Phân số nào lớn hơn 1/2?
Đáp án: d) 5/9
Câu 5: Tìm x biết: x/4 = 5/10
Đáp án: b) x = 2
Để giải các bài tập về tính chất cơ bản của phân số, học sinh cần:
Để học tốt môn Toán, đặc biệt là phần phân số, học sinh nên:
Chúc các em học tốt!