Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài 5: Thứ tự thực hiện các phép tính Toán 6 Chân trời sáng tạo

Trắc nghiệm Bài 5: Thứ tự thực hiện các phép tính Toán 6 Chân trời sáng tạo

Trắc nghiệm Bài 5: Thứ tự thực hiện các phép tính Toán 6 Chân trời sáng tạo

Chào mừng các em học sinh đến với bài trắc nghiệm Toán 6 Bài 5: Thứ tự thực hiện các phép tính, thuộc chương trình Chân trời sáng tạo. Bài trắc nghiệm này được thiết kế để giúp các em ôn luyện và củng cố kiến thức về thứ tự thực hiện các phép tính cộng, trừ, nhân, chia trong biểu thức toán học.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, từ dễ đến khó, giúp các em tự đánh giá năng lực và chuẩn bị tốt nhất cho các bài kiểm tra trên lớp.

Đề bài

    Câu 1 :

    Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?

    • A.

      Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa

    • B.

      Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ

    • C.

      Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ 

    • D.

      Cả ba đáp án A,B,C đều đúng

    Câu 2 :

    Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?

    • A.

      \(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)

    • B.

      \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

    • C.

      \(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)

    • D.

      \(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)

    Câu 3 :

    Tính: \(1 + 12.3.5\)

    • A.

      181

    • B.

      195

    • C.

      180

    • D.

      15

    Câu 4 :

    Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là

    • A.

      $100$ 

    • B.

      $95$ 

    • C.

      $105$ 

    • D.

      $80$ 

    Câu 5 :

    Giá trị của biểu thức \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\) bằng

    • A.

      $140$

    • B.

       $60$

    • C.

      $80$

    • D.

      $40$

    Câu 6 :

    Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là

    • A.

      $319$

    • B.

      $931$

    • C.

      $193$

    • D.

      $391$

    Câu 7 :

    Tìm \(x\) thỏa mãn \(165 - \left( {35:x + 3} \right).19 = 13\).

    • A.

      $x = 7$

    • B.

       $x = 8$

    • C.

      $x = 9$

    • D.

       $x = 10$

    Câu 8 :

    Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)

    • A.

      6

    • B.
      3
    • C.
      2
    • D.
      1
    Câu 9 :

    Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:

    • A.

      $9$

    • B.

      $10$

    • C.

       $11$

    • D.

      $12$

    Lời giải và đáp án

    Câu 1 :

    Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?

    • A.

      Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa

    • B.

      Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ

    • C.

      Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ 

    • D.

      Cả ba đáp án A,B,C đều đúng

    Đáp án : C

    Lời giải chi tiết :

    Đối với biểu thức không có dấu ngoặc thì thứ tự thực hiện phép tính đúng là : Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ

    Câu 2 :

    Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?

    • A.

      \(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)

    • B.

      \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

    • C.

      \(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)

    • D.

      \(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)

    Đáp án : B

    Lời giải chi tiết :

    Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

    Câu 3 :

    Tính: \(1 + 12.3.5\)

    • A.

      181

    • B.

      195

    • C.

      180

    • D.

      15

    Đáp án : A

    Phương pháp giải :

    Thực hiện theo quy tắc:

    Nhân và chia \( \to \) cộng và trừ.

    Lời giải chi tiết :

    \(1 + 12.3.5 = 1+\left( {12.3} \right).5 = 1 + 36.5 = 1 + 180 = 181\)

    Câu 4 :

    Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là

    • A.

      $100$ 

    • B.

      $95$ 

    • C.

      $105$ 

    • D.

      $80$ 

    Đáp án : C

    Phương pháp giải :

    Thực hiện phép tính nâng lên lũy thừa rồi đến nhân chia cuối cùng là cộng trừ.

    Lời giải chi tiết :

    Ta có \({2^4} - 50:25 + 13.7\)\( = 16 - 2 + 91 = 14 + 91 = 105\)

    Câu 5 :

    Giá trị của biểu thức \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\) bằng

    • A.

      $140$

    • B.

       $60$

    • C.

      $80$

    • D.

      $40$

    Đáp án : D

    Phương pháp giải :

    Thực hiện phép tính trong ngoặc tròn rồi đến ngoặc vuông. Sau đó là phép nhân và phép trừ.

    Lời giải chi tiết :

    Ta có \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\)

    \( = 2\left[ {\left( {195 + 5} \right):8 + 195} \right] - 400\)

    \( = 2\left[ {200:8 + 195} \right] - 400\)

    \( = 2\left( {25 + 195} \right) - 400\)

    \( = 2.220 - 400\)

    \( = 440 - 400\)

    \( = 40\)

    Câu 6 :

    Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là

    • A.

      $319$

    • B.

      $931$

    • C.

      $193$

    • D.

      $391$

    Đáp án : D

    Phương pháp giải :

    Thực hiện phép tính trong ngoặc đơn trước rồi tính trong ngoặc vuông.

    Sau đó là phép lũy thừa, nhân và trừ các kết quả.

    Lời giải chi tiết :

    Ta có \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\)

    \( = {3^4}.6 - \left( {131 - {6^2}} \right)\)

    \( = 81.6 - \left( {131 - 36} \right)\)

    \( = 486 - 95 = 391.\)

    Câu 7 :

    Tìm \(x\) thỏa mãn \(165 - \left( {35:x + 3} \right).19 = 13\).

    • A.

      $x = 7$

    • B.

       $x = 8$

    • C.

      $x = 9$

    • D.

       $x = 10$

    Đáp án : A

    Phương pháp giải :

    Dựa vào mối quan hệ giữa số hạng và tổng, giữa số bị trừ, số trừ và hiệu hoặc giữa thừa số và tích để tìm $x$.

    Lời giải chi tiết :

    \(\begin{array}{l}165 - \left( {35:x + 3} \right).19 = 13\\\left( {35:x + 3} \right).19\, = 165 - 13\\\left( {35:x + 3} \right).19 = 152\\35:x + 3 = 152:19\\35:x + 3\, = 8\\35:x\, = 8 - 3\\35:x\,\, = 5\\x\, = 35:5\\x = 7.\end{array}\)

    Câu 8 :

    Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)

    • A.

      6

    • B.
      3
    • C.
      2
    • D.
      1

    Đáp án : A

    Phương pháp giải :

    Thực hiện phép tính trong ngoặc tròn ( ) trước: Lũy thừa \( \to \) nhân và chia \( \to \) cộng và trừ.

    Lấy kết quả trong ngoặc nhân với 3.

    Lời giải chi tiết :

    \(3.\left( {{2^3}.4 - 6.5} \right) = 3.\left( {8.4 - 6.5} \right)\)\( = 3.\left( {32 - 30} \right) = 3.2 = 6\)

    Câu 9 :

    Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:

    • A.

      $9$

    • B.

      $10$

    • C.

       $11$

    • D.

      $12$

    Đáp án : B

    Phương pháp giải :

    + Tính vế phải sau đó tìm thừa số chưa biết bằng cách lấy tích chia cho thừa số đã biết.

    + Sử dụng mối quan hệ giữa số hạng và tổng để tìm $x$

    Lời giải chi tiết :

    \(\begin{array}{l}5(x + 15) = {5^3}\\5(x + 15) = 125\\x + 15 = 125:5\\x + 15\, = 25\\x\,\, = 25 - 15\\x\, = 10.\end{array}\)

    Lời giải và đáp án

      Câu 1 :

      Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?

      • A.

        Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa

      • B.

        Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ

      • C.

        Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ 

      • D.

        Cả ba đáp án A,B,C đều đúng

      Câu 2 :

      Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?

      • A.

        \(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)

      • B.

        \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

      • C.

        \(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)

      • D.

        \(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)

      Câu 3 :

      Tính: \(1 + 12.3.5\)

      • A.

        181

      • B.

        195

      • C.

        180

      • D.

        15

      Câu 4 :

      Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là

      • A.

        $100$ 

      • B.

        $95$ 

      • C.

        $105$ 

      • D.

        $80$ 

      Câu 5 :

      Giá trị của biểu thức \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\) bằng

      • A.

        $140$

      • B.

         $60$

      • C.

        $80$

      • D.

        $40$

      Câu 6 :

      Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là

      • A.

        $319$

      • B.

        $931$

      • C.

        $193$

      • D.

        $391$

      Câu 7 :

      Tìm \(x\) thỏa mãn \(165 - \left( {35:x + 3} \right).19 = 13\).

      • A.

        $x = 7$

      • B.

         $x = 8$

      • C.

        $x = 9$

      • D.

         $x = 10$

      Câu 8 :

      Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)

      • A.

        6

      • B.
        3
      • C.
        2
      • D.
        1
      Câu 9 :

      Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:

      • A.

        $9$

      • B.

        $10$

      • C.

         $11$

      • D.

        $12$

      Câu 1 :

      Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?

      • A.

        Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa

      • B.

        Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ

      • C.

        Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ 

      • D.

        Cả ba đáp án A,B,C đều đúng

      Đáp án : C

      Lời giải chi tiết :

      Đối với biểu thức không có dấu ngoặc thì thứ tự thực hiện phép tính đúng là : Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ

      Câu 2 :

      Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?

      • A.

        \(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)

      • B.

        \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

      • C.

        \(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)

      • D.

        \(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)

      Đáp án : B

      Lời giải chi tiết :

      Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

      Câu 3 :

      Tính: \(1 + 12.3.5\)

      • A.

        181

      • B.

        195

      • C.

        180

      • D.

        15

      Đáp án : A

      Phương pháp giải :

      Thực hiện theo quy tắc:

      Nhân và chia \( \to \) cộng và trừ.

      Lời giải chi tiết :

      \(1 + 12.3.5 = 1+\left( {12.3} \right).5 = 1 + 36.5 = 1 + 180 = 181\)

      Câu 4 :

      Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là

      • A.

        $100$ 

      • B.

        $95$ 

      • C.

        $105$ 

      • D.

        $80$ 

      Đáp án : C

      Phương pháp giải :

      Thực hiện phép tính nâng lên lũy thừa rồi đến nhân chia cuối cùng là cộng trừ.

      Lời giải chi tiết :

      Ta có \({2^4} - 50:25 + 13.7\)\( = 16 - 2 + 91 = 14 + 91 = 105\)

      Câu 5 :

      Giá trị của biểu thức \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\) bằng

      • A.

        $140$

      • B.

         $60$

      • C.

        $80$

      • D.

        $40$

      Đáp án : D

      Phương pháp giải :

      Thực hiện phép tính trong ngoặc tròn rồi đến ngoặc vuông. Sau đó là phép nhân và phép trừ.

      Lời giải chi tiết :

      Ta có \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\)

      \( = 2\left[ {\left( {195 + 5} \right):8 + 195} \right] - 400\)

      \( = 2\left[ {200:8 + 195} \right] - 400\)

      \( = 2\left( {25 + 195} \right) - 400\)

      \( = 2.220 - 400\)

      \( = 440 - 400\)

      \( = 40\)

      Câu 6 :

      Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là

      • A.

        $319$

      • B.

        $931$

      • C.

        $193$

      • D.

        $391$

      Đáp án : D

      Phương pháp giải :

      Thực hiện phép tính trong ngoặc đơn trước rồi tính trong ngoặc vuông.

      Sau đó là phép lũy thừa, nhân và trừ các kết quả.

      Lời giải chi tiết :

      Ta có \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\)

      \( = {3^4}.6 - \left( {131 - {6^2}} \right)\)

      \( = 81.6 - \left( {131 - 36} \right)\)

      \( = 486 - 95 = 391.\)

      Câu 7 :

      Tìm \(x\) thỏa mãn \(165 - \left( {35:x + 3} \right).19 = 13\).

      • A.

        $x = 7$

      • B.

         $x = 8$

      • C.

        $x = 9$

      • D.

         $x = 10$

      Đáp án : A

      Phương pháp giải :

      Dựa vào mối quan hệ giữa số hạng và tổng, giữa số bị trừ, số trừ và hiệu hoặc giữa thừa số và tích để tìm $x$.

      Lời giải chi tiết :

      \(\begin{array}{l}165 - \left( {35:x + 3} \right).19 = 13\\\left( {35:x + 3} \right).19\, = 165 - 13\\\left( {35:x + 3} \right).19 = 152\\35:x + 3 = 152:19\\35:x + 3\, = 8\\35:x\, = 8 - 3\\35:x\,\, = 5\\x\, = 35:5\\x = 7.\end{array}\)

      Câu 8 :

      Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)

      • A.

        6

      • B.
        3
      • C.
        2
      • D.
        1

      Đáp án : A

      Phương pháp giải :

      Thực hiện phép tính trong ngoặc tròn ( ) trước: Lũy thừa \( \to \) nhân và chia \( \to \) cộng và trừ.

      Lấy kết quả trong ngoặc nhân với 3.

      Lời giải chi tiết :

      \(3.\left( {{2^3}.4 - 6.5} \right) = 3.\left( {8.4 - 6.5} \right)\)\( = 3.\left( {32 - 30} \right) = 3.2 = 6\)

      Câu 9 :

      Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:

      • A.

        $9$

      • B.

        $10$

      • C.

         $11$

      • D.

        $12$

      Đáp án : B

      Phương pháp giải :

      + Tính vế phải sau đó tìm thừa số chưa biết bằng cách lấy tích chia cho thừa số đã biết.

      + Sử dụng mối quan hệ giữa số hạng và tổng để tìm $x$

      Lời giải chi tiết :

      \(\begin{array}{l}5(x + 15) = {5^3}\\5(x + 15) = 125\\x + 15 = 125:5\\x + 15\, = 25\\x\,\, = 25 - 15\\x\, = 10.\end{array}\)

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Trắc nghiệm Bài 5: Thứ tự thực hiện các phép tính Toán 6 Chân trời sáng tạo – nội dung then chốt trong chuyên mục giải sgk toán 6 trên nền tảng tài liệu toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Bài viết liên quan

      Bài 5: Thứ tự thực hiện các phép tính Toán 6 Chân trời sáng tạo - Tổng quan

      Trong chương trình Toán 6, việc nắm vững thứ tự thực hiện các phép tính là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn. Bài 5 trong sách Toán 6 Chân trời sáng tạo tập trung vào việc giúp học sinh hiểu rõ và áp dụng đúng quy tắc này.

      Quy tắc thứ tự thực hiện các phép tính

      Để đảm bảo tính chính xác trong các phép tính, chúng ta cần tuân thủ một quy tắc nhất định. Quy tắc này thường được nhớ bằng các cụm từ như “Nhân chia trước, cộng trừ sau” hoặc “Trong ngoặc trước, ngoài ngoặc sau”. Cụ thể:

      1. Trong ngoặc: Thực hiện các phép tính bên trong ngoặc trước. Nếu có nhiều ngoặc lồng nhau, thực hiện từ ngoặc trong cùng ra ngoài.
      2. Nhân và chia: Thực hiện các phép nhân và chia theo thứ tự từ trái sang phải.
      3. Cộng và trừ: Thực hiện các phép cộng và trừ theo thứ tự từ trái sang phải.

      Các dạng bài tập thường gặp

      Bài 5 thường xuất hiện các dạng bài tập sau:

      • Tính giá trị của biểu thức: Yêu cầu học sinh tính giá trị của một biểu thức số, áp dụng đúng thứ tự thực hiện các phép tính.
      • Điền vào chỗ trống: Yêu cầu học sinh điền các phép toán hoặc số thích hợp vào chỗ trống để hoàn thành một biểu thức đúng.
      • Tìm số thích hợp: Yêu cầu học sinh tìm một số thỏa mãn một điều kiện cho trước, liên quan đến thứ tự thực hiện các phép tính.
      • Bài toán có nhiều ngoặc: Yêu cầu học sinh tính giá trị của biểu thức có nhiều ngoặc lồng nhau.

      Ví dụ minh họa

      Ví dụ 1: Tính giá trị của biểu thức 12 + 6 : 3

      Giải:

      1. Thực hiện phép chia trước: 6 : 3 = 2
      2. Thực hiện phép cộng sau: 12 + 2 = 14
      3. Vậy, 12 + 6 : 3 = 14

      Ví dụ 2: Tính giá trị của biểu thức (5 + 3) x 2

      Giải:

      1. Thực hiện phép tính trong ngoặc trước: 5 + 3 = 8
      2. Thực hiện phép nhân sau: 8 x 2 = 16
      3. Vậy, (5 + 3) x 2 = 16

      Mẹo làm bài hiệu quả

      • Gạch chân hoặc đánh dấu: Gạch chân hoặc đánh dấu các phép tính cần thực hiện trước để tránh nhầm lẫn.
      • Viết các bước giải: Viết rõ ràng các bước giải để dễ dàng kiểm tra lại và tìm ra lỗi sai.
      • Kiểm tra lại kết quả: Sau khi tính toán xong, hãy kiểm tra lại kết quả bằng máy tính hoặc bằng cách tính toán lại từ đầu.
      • Luyện tập thường xuyên: Luyện tập thường xuyên với nhiều dạng bài tập khác nhau để nắm vững kiến thức và kỹ năng.

      Bài tập trắc nghiệm nâng cao

      Để kiểm tra mức độ hiểu bài của mình, các em có thể làm thêm các bài tập trắc nghiệm nâng cao sau:

      Câu hỏiĐáp án
      Tính giá trị của biểu thức: 20 - 4 x 50
      Tính giá trị của biểu thức: (15 - 3) : 26
      Tính giá trị của biểu thức: 8 + 2 x (7 - 5)12

      Kết luận

      Việc nắm vững thứ tự thực hiện các phép tính là một kỹ năng cơ bản và quan trọng trong Toán học. Hy vọng rằng bài viết này đã giúp các em hiểu rõ hơn về quy tắc này và có thể áp dụng nó một cách hiệu quả trong các bài toán.

      Tài liệu, đề thi và đáp án Toán 6