Logo Header
  1. Môn Toán
  2. Trắc nghiệm Các dạng toán về tính chất cơ bản của phân số Toán 6 Chân trời sáng tạo

Trắc nghiệm Các dạng toán về tính chất cơ bản của phân số Toán 6 Chân trời sáng tạo

Luyện tập Trắc nghiệm Tính chất cơ bản của phân số Toán 6

Chào mừng các em học sinh đến với bài tập trắc nghiệm về các dạng toán liên quan đến tính chất cơ bản của phân số môn Toán lớp 6, chương trình Chân trời sáng tạo. Bài tập này được thiết kế để giúp các em củng cố kiến thức đã học và rèn luyện kỹ năng giải toán.

Giaitoan.edu.vn cung cấp bộ đề trắc nghiệm đa dạng, bao gồm nhiều dạng bài tập khác nhau, từ cơ bản đến nâng cao, giúp các em làm quen với các dạng đề thi và tự tin hơn trong các kỳ kiểm tra.

Đề bài

    Câu 1 :

    Phân số nào dưới đây là phân số tối giản?

    • A.

      \(\dfrac{{ - 2}}{4}\) 

    • B.

      \(\dfrac{{ - 15}}{{ - 96}}\)

    • C.

      \(\dfrac{{13}}{{27}}\)

    • D.

      \(\dfrac{{ - 29}}{{58}}\)

    Câu 2 :

    Nhân cả tử số và mẫu số của phân số \(\dfrac{{14}}{{23}}\) với số nào để được phân số \(\dfrac{{168}}{{276}}?\)

    • A.

      \(14\) 

    • B.

      \(23\)

    • C.

      \(12\)

    • D.

      \(22\)

    Câu 3 :

    Rút gọn phân số \(\dfrac{{600}}{{800}}\) về dạng phân số tối giản ta được:

    • A.

      \(\dfrac{1}{2}\)

    • B.

      \(\dfrac{6}{8}\)

    • C.

      \(\dfrac{3}{4}\)

    • D.

      \(\dfrac{{ - 3}}{4}\)

    Câu 4 :

    Hãy chọn phân số không bằng phân số \(\dfrac{{ - 8}}{9}\) trong các phân số dưới đây?

    • A.

      \(\dfrac{{16}}{{ - 18}}\) 

    • B.

      \(\dfrac{{ - 72}}{{81}}\)

    • C.

      \(\dfrac{{ - 24}}{{ - 27}}\)

    • D.

      \(\dfrac{{ - 88}}{{99}}\)

    Câu 5 :

    Rút gọn phân số \(\dfrac{{4.8}}{{64.( - 7)}}\) ta được phân số tối giản là:

    • A.

      \(\dfrac{{ - 1}}{7}\) 

    • B.

      \(\dfrac{{ - 1}}{{14}}\)

    • C.

      \(\dfrac{4}{{ - 56}}\)

    • D.

      \(\dfrac{{ - 1}}{{70}}\)

    Câu 6 :

    Rút gọn biểu thức \(A = \dfrac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\) ta được

    • A.

      \(\dfrac{{ - 13}}{{25}}\)

    • B.

      \(\dfrac{{ - 18}}{{25}}\)

    • C.

      \(\dfrac{{ - 6}}{{25}}\)

    • D.

      \(\dfrac{{ - 39}}{{50}}\)

    Câu 7 :

    Phân số nào sau đây là kết quả của biểu thức \(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}}\) sau khi rút gọn đến tối giản?

    • A.

      \(\dfrac{{ - 13}}{{22}}\)

    • B.

      \(\dfrac{{13}}{{22}}\)

    • C.

      \(\dfrac{{ - 13}}{{18}}\)

    • D.

      \(\dfrac{{ - 117}}{{198}}\)

    Câu 8 :

    Biểu thức \(\dfrac{{{5^{12}}{{.3}^9} - {5^{10}}{{.3}^{11}}}}{{{5^{10}}{{.3}^{10}}}}\) sau khi đã rút gọn đến tối giản có mẫu số dương là:

    • A.

      \(16\) 

    • B.

      \(3\)

    • C.

      \(\dfrac{{16}}{5}\)

    • D.

      \(\dfrac{{16}}{3}\)

    Câu 9 :

    Sau khi rút gọn biểu thức \(\dfrac{{{5^{11}}{{.7}^{12}} + {5^{11}}{{.7}^{11}}}}{{{5^{12}}{{.7}^{12}} + {{9.5}^{11}}{{.7}^{11}}}}\) ta được phân số \(\dfrac{a}{b}.\) Tính tổng \(a + b.\)

    • A.

      \(26\)

    • B.

      \(13\)

    • C.

      \(52\)

    • D.

      \(8\)

    Câu 10 :

    Rút gọn phân số \(\dfrac{{{9^{14}}{{.25}^5}{{.8}^7}}}{{{{18}^{12}}{{.625}^3}{{.24}^3}}}\) ta được

    • A.

      \(\dfrac{9}{5}\)

    • B.

      \(\dfrac{9}{{25}}\)

    • C.

      \(\dfrac{3}{{25}}\)

    • D.

      \(\dfrac{3}{5}\)

    Câu 11 :

    Cho \(A = \dfrac{{1.3.5.7...39}}{{21.22.23...40}}\) và \(B = \dfrac{{1.3.5...\left( {2n - 1} \right)}}{{\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)...2n}}\,\left( {n \in {N^*}} \right)\) . Chọn câu đúng.

    • A.

      \(A = \dfrac{1}{{{2^{20}}}};B = \dfrac{1}{{{2^n}}}\) 

    • B.

      \(A = \dfrac{1}{{{2^{25}}}},B = \dfrac{1}{{{2^{n + 1}}}}\)

    • C.

      \(A = \dfrac{1}{{{2^{20}}}},B = \dfrac{1}{{{2^{2n}}}}\)

    • D.

      \(A = \dfrac{1}{{{2^{21}}}},B = \dfrac{1}{{{2^{n + 1}}}}\)

    Câu 12 :

    Tìm phân số bằng với phân số \(\dfrac{{200}}{{520}}\) mà có tổng của tử và mẫu bằng \(306.\)

    • A.

      \(\dfrac{{84}}{{222}}\)

    • B.

      \(\dfrac{{200}}{{520}}\)

    • C.

      \(\dfrac{{85}}{{221}}\)

    • D.

      \(\dfrac{{100}}{{260}}\)

    Câu 13 :

    Viết dạng tổng quát của các phân số bằng với phân số \(\dfrac{{ - 12}}{{40}}\)

    • A.

      \(\dfrac{{ - 3k}}{{10k}},k \in Z\) 

    • B.

      \(\dfrac{{ - 3k}}{{10}},k \in Z,k \ne 0\)

    • C.

      \(\dfrac{{ - 3k}}{{10k}},k \in Z,k \ne 0\)

    • D.

      \(\dfrac{{ - 3}}{{10}}\)

    Câu 14 :

    Tìm phân số tối giản \(\dfrac{a}{b}\) biết rằng lấy tử cộng với \(6,\) lấy mẫu cộng với \(14\) thì ta được phân số bằng \(\dfrac{3}{7}.\)

    • A.

      \(\dfrac{4}{5}\)

    • B.

      \(\dfrac{{ 7}}{3}\)

    • C.

      \(\dfrac{3}{7}\)

    • D.

      \(\dfrac{{ - 3}}{7}\)

    Câu 15 :

    Cho các phân số \(\dfrac{6}{{n + 8}}; \dfrac{7}{{n + 9}}; \dfrac{8}{{n + 10}};...;\dfrac{{35}}{{n + 37}}.\) Tìm số tự nhiên \(n\) nhỏ nhất để các phân số trên tối giản.

    • A.

      \(35\)

    • B.

      \(34\)

    • C.

      \(37\)

    • D.

      \(36\)

    Câu 16 :

    Rút gọn phân số \(\dfrac{{ - 12a}}{{24}}\) , \(a \in \mathbb{Z}\) ta được:

    • A.

      \(\dfrac{a}{2}\)

    • B.

      \(\dfrac{1}{2}\)

    • C.

      \(\dfrac{{ - 1}}{2}\)

    • D.

      \(\dfrac{{ - a}}{2}\)

    Câu 17 :

    Qui đồng mẫu số các phân số \(\dfrac{{11}}{{12}};\dfrac{{15}}{{16}};\dfrac{{23}}{{20}}\) ta được các phân số lần lượt là

    • A.

      \(\dfrac{{220}}{{240}};\dfrac{{225}}{{240}};\dfrac{{276}}{{240}}\)

    • B.

      \(\dfrac{{225}}{{240}};\dfrac{{220}}{{240}};\dfrac{{276}}{{240}}\)

    • C.

      \(\dfrac{{225}}{{240}};\dfrac{{276}}{{240}};\dfrac{{220}}{{240}}\)

    • D.

      \(\dfrac{{220}}{{240}};\dfrac{{276}}{{240}};\dfrac{{225}}{{240}}\)

    Lời giải và đáp án

    Câu 1 :

    Phân số nào dưới đây là phân số tối giản?

    • A.

      \(\dfrac{{ - 2}}{4}\) 

    • B.

      \(\dfrac{{ - 15}}{{ - 96}}\)

    • C.

      \(\dfrac{{13}}{{27}}\)

    • D.

      \(\dfrac{{ - 29}}{{58}}\)

    Đáp án : C

    Phương pháp giải :

    Định nghĩa phân số tối giản:

    Phân số tối giản (hay phân số không rút gọn được nữa) là phân số mà cả tử và mẫu chỉ có ước chung là $1$ và $ - 1.$

    Do đó ta chỉ cần tìm \(ƯCLN\) của giá trị tuyệt đối của tử và mẫu phân số, nếu \(ƯCLN\) đó là \(1\) thì phân số đã cho tối giản.

    Lời giải chi tiết :

    Đáp án A: \(ƯCLN\left( {2;4} \right) = 2 \ne 1\) nên loại.

    Đáp án B: \(ƯCLN\left( {15;96} \right) = 3 \ne 1\) nên loại.

    Đáp án C: \(ƯCLN\left( {13;27} \right) = 1\) nên C đúng.

    Đáp án D: \(ƯCLN\left( {29;58} \right) = 29 \ne 1\) nên D sai.

    Câu 2 :

    Nhân cả tử số và mẫu số của phân số \(\dfrac{{14}}{{23}}\) với số nào để được phân số \(\dfrac{{168}}{{276}}?\)

    • A.

      \(14\) 

    • B.

      \(23\)

    • C.

      \(12\)

    • D.

      \(22\)

    Đáp án : C

    Phương pháp giải :

    Lấy tử số và mẫu số của phân số sau lần lượt chia cho tử số và mẫu số của phân số trước, nếu ra cùng một số thì đó là đáp án, nếu ra hai số khác nhau thì ta kết luận không có số cần tìm hoặc hai phân số đã cho không bằng nhau.

    Lời giải chi tiết :

    Ta có: \(168:14 = 12\) và \(276:23 = 12\) nên số cần tìm là \(12\)

    Câu 3 :

    Rút gọn phân số \(\dfrac{{600}}{{800}}\) về dạng phân số tối giản ta được:

    • A.

      \(\dfrac{1}{2}\)

    • B.

      \(\dfrac{6}{8}\)

    • C.

      \(\dfrac{3}{4}\)

    • D.

      \(\dfrac{{ - 3}}{4}\)

    Đáp án : C

    Phương pháp giải :

    - Chia cả tử và mẫu của phân số $\dfrac{a}{b}$ cho ƯCLN của $\left| a \right|$ và $\left| b \right|$ để rút gọn phân số tối giản.

    Lời giải chi tiết :

    Ta có: \(ƯCLN\left( {600,800} \right) = 200\) nên:

    \(\dfrac{{600}}{{800}} = \dfrac{{600:200}}{{800:200}} = \dfrac{3}{4}\)

    Câu 4 :

    Hãy chọn phân số không bằng phân số \(\dfrac{{ - 8}}{9}\) trong các phân số dưới đây?

    • A.

      \(\dfrac{{16}}{{ - 18}}\) 

    • B.

      \(\dfrac{{ - 72}}{{81}}\)

    • C.

      \(\dfrac{{ - 24}}{{ - 27}}\)

    • D.

      \(\dfrac{{ - 88}}{{99}}\)

    Đáp án : C

    Phương pháp giải :

    Rút gọn mỗi phân số ở từng đáp án và kiểm tra xem có bằng phân số \(\dfrac{{ - 8}}{9}\) hay không rồi kết luận.

    Lời giải chi tiết :

    Đáp án A: \(\dfrac{{16}}{{ - 18}} = \dfrac{{ - 16}}{{18}} = \dfrac{{ - 16:2}}{{18:2}} = \dfrac{{ - 8}}{9}\) nên A đúng.

    Đáp án B: \(\dfrac{{ - 72}}{{81}} = \dfrac{{ - 72:9}}{{81:9}} = \dfrac{{ - 8}}{9}\) nên B đúng.

    Đáp án C: \(\dfrac{{ - 24}}{{ - 27}} = \dfrac{{24}}{{27}} = \dfrac{{24:3}}{{27:3}} = \dfrac{8}{9} \ne \dfrac{{ - 8}}{9}\) nên C sai.

    Đáp án D: \(\dfrac{{ - 88}}{{99}} = \dfrac{{ - 88:11}}{{99:11}} = \dfrac{{ - 8}}{9}\) nên D đúng.

    Câu 5 :

    Rút gọn phân số \(\dfrac{{4.8}}{{64.( - 7)}}\) ta được phân số tối giản là:

    • A.

      \(\dfrac{{ - 1}}{7}\) 

    • B.

      \(\dfrac{{ - 1}}{{14}}\)

    • C.

      \(\dfrac{4}{{ - 56}}\)

    • D.

      \(\dfrac{{ - 1}}{{70}}\)

    Đáp án : B

    Phương pháp giải :

    Tách các thừa số ở tử và mẫu thành tích các thừa số nhỏ hơn rồi chia cả tử và mẫu cho các thừa số chung.

    Lời giải chi tiết :

    Ta có:

    \(\dfrac{{4.8}}{{64.\left( { - 7} \right)}} = \dfrac{{4.8}}{{2.4.8.\left( { - 7} \right)}} = \dfrac{1}{{2.\left( { - 7} \right)}} = \dfrac{{ - 1}}{{14}}\)

    Câu 6 :

    Rút gọn biểu thức \(A = \dfrac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\) ta được

    • A.

      \(\dfrac{{ - 13}}{{25}}\)

    • B.

      \(\dfrac{{ - 18}}{{25}}\)

    • C.

      \(\dfrac{{ - 6}}{{25}}\)

    • D.

      \(\dfrac{{ - 39}}{{50}}\)

    Đáp án : D

    Phương pháp giải :

    - Phân tích tử của \(A\) thành các nhân tử.

    - Rút gọn biểu thức bằng cách chia cả tử và mẫu của \(A\) cho nhân tử chung.

    Lời giải chi tiết :

    Ta có:

    \(A = \dfrac{{3.\left( { - 4} \right).60 - 60}}{{50.20}}\)\( = \dfrac{{\left[ {3.\left( { - 4} \right) - 1} \right].60}}{{50.20}}\)\( = \dfrac{{ - 13.60}}{{50.20}} = \dfrac{{ - 13.3}}{{50}} = \dfrac{{ - 39}}{{50}}\)

    Câu 7 :

    Phân số nào sau đây là kết quả của biểu thức \(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}}\) sau khi rút gọn đến tối giản?

    • A.

      \(\dfrac{{ - 13}}{{22}}\)

    • B.

      \(\dfrac{{13}}{{22}}\)

    • C.

      \(\dfrac{{ - 13}}{{18}}\)

    • D.

      \(\dfrac{{ - 117}}{{198}}\)

    Đáp án : A

    Phương pháp giải :

    - Phân tích các thừa số trong tích ở cả tử và mẫu thành tích các thừa số nguyên tố.

    - Chia cả tử và mẫu của biểu thức cho từng lũy thừa chung ở tử và mẫu mà có số mũ nhỏ hơn.

    Lời giải chi tiết :

    \(\dfrac{{2.9.52}}{{22.\left( { - 72} \right)}} = \dfrac{{{{2.3}^2}{{.2}^2}.13}}{{2.11.\left( { - {2^3}{{.3}^2}} \right)}}\)\( = \dfrac{{{2^3}{{.3}^2}.13}}{{ - {2^4}{{.3}^2}.11}} = \dfrac{{13}}{{ - 2.11}} = \dfrac{{ - 13}}{{22}}\)

    Câu 8 :

    Biểu thức \(\dfrac{{{5^{12}}{{.3}^9} - {5^{10}}{{.3}^{11}}}}{{{5^{10}}{{.3}^{10}}}}\) sau khi đã rút gọn đến tối giản có mẫu số dương là:

    • A.

      \(16\) 

    • B.

      \(3\)

    • C.

      \(\dfrac{{16}}{5}\)

    • D.

      \(\dfrac{{16}}{3}\)

    Đáp án : B

    Phương pháp giải :

    Dùng tính chất cơ bản của phân số: \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\,\,(n \in ƯC(a,b),\,n \ne 1,n \ne - 1)\).

    Lời giải chi tiết :

    \(\,\dfrac{{{5^{12}}{{.3}^9} - {5^{10}}{{.3}^{11}}}}{{{5^{10}}{{.3}^{10}}}} = \dfrac{{{5^{10}}{{.3}^9}.\left( {{5^2} - {3^2}} \right)}}{{{5^{10}}{{.3}^{10}}}} = \dfrac{{{5^{10}}{{.3}^9}.16}}{{{5^{10}}{{.3}^{10}}}} = \dfrac{{16}}{3}.\)

    Vậy mẫu số của phân số đó là \(3\)

    Câu 9 :

    Sau khi rút gọn biểu thức \(\dfrac{{{5^{11}}{{.7}^{12}} + {5^{11}}{{.7}^{11}}}}{{{5^{12}}{{.7}^{12}} + {{9.5}^{11}}{{.7}^{11}}}}\) ta được phân số \(\dfrac{a}{b}.\) Tính tổng \(a + b.\)

    • A.

      \(26\)

    • B.

      \(13\)

    • C.

      \(52\)

    • D.

      \(8\)

    Đáp án : B

    Phương pháp giải :

    Dùng tính chất cơ bản của phân số: \(\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}\,\,(n \in ƯC(a,b),\,n \ne 1,n \ne - 1)\).

    Lời giải chi tiết :

    \(\dfrac{{{5^{11}}{{.7}^{12}} + {5^{11}}{{.7}^{11}}}}{{{5^{12}}{{.7}^{12}} + {{9.5}^{11}}{{.7}^{11}}}} = \dfrac{{{5^{11}}{{.7}^{11}}(7 + 1)}}{{{5^{11}}{{.7}^{11}}(5.7 + 9)}} = \dfrac{8}{{44}} = \dfrac{2}{{11}}.\)

    Do đó \(a = 2,b = 11\) nên \(a + b = 13\)

    Câu 10 :

    Rút gọn phân số \(\dfrac{{{9^{14}}{{.25}^5}{{.8}^7}}}{{{{18}^{12}}{{.625}^3}{{.24}^3}}}\) ta được

    • A.

      \(\dfrac{9}{5}\)

    • B.

      \(\dfrac{9}{{25}}\)

    • C.

      \(\dfrac{3}{{25}}\)

    • D.

      \(\dfrac{3}{5}\)

    Đáp án : C

    Phương pháp giải :

    - Phân tích các thừa số ở cả tử và mẫu của biểu thức thành tích các thừa số nguyên tố.

    - Chia cả tử và mẫu cho thừa số chung để rút gọn.

    Lời giải chi tiết :

    \(\dfrac{{{9^{14}}{{.25}^5}{{.8}^7}}}{{{{18}^{12}}{{.625}^3}{{.24}^3}}}\)\( = \dfrac{{{{\left( {{3^2}} \right)}^{14}}.{{\left( {{5^2}} \right)}^5}.{{\left( {{2^3}} \right)}^7}}}{{{{\left( {{{2.3}^2}} \right)}^{12}}.{{\left( {{5^4}} \right)}^3}.{{\left( {{2^3}.3} \right)}^3}}}\)\( = \dfrac{{{3^{28}}{{.5}^{10}}{{.2}^{21}}}}{{{2^{12}}{{.3}^{24}}{{.5}^{12}}{{.2}^9}{{.3}^3}}}\)\( = \dfrac{{{2^{21}}{{.3}^{28}}{{.5}^{10}}}}{{{2^{21}}{{.3}^{27}}{{.5}^{12}}}} = \dfrac{3}{{{5^2}}} = \dfrac{3}{{25}}\)

    Câu 11 :

    Cho \(A = \dfrac{{1.3.5.7...39}}{{21.22.23...40}}\) và \(B = \dfrac{{1.3.5...\left( {2n - 1} \right)}}{{\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)...2n}}\,\left( {n \in {N^*}} \right)\) . Chọn câu đúng.

    • A.

      \(A = \dfrac{1}{{{2^{20}}}};B = \dfrac{1}{{{2^n}}}\) 

    • B.

      \(A = \dfrac{1}{{{2^{25}}}},B = \dfrac{1}{{{2^{n + 1}}}}\)

    • C.

      \(A = \dfrac{1}{{{2^{20}}}},B = \dfrac{1}{{{2^{2n}}}}\)

    • D.

      \(A = \dfrac{1}{{{2^{21}}}},B = \dfrac{1}{{{2^{n + 1}}}}\)

    Đáp án : A

    Phương pháp giải :

    Quan sát \(A\) và \(B\) ta thấy tử số của biểu thức đều thiếu thành phần tích các số chẵn \(2.4.6.....2n\) nên ta có thể thử:

    - Nhân cả tử và mẫu của \(A\) với \(2.4.6.....40\)

    - Nhân cả tử và mẫu của \(B\) với \(2.4.6.....2n\)

    Sau đó rút gọn các biểu thức ta được kết quả cần tìm.

    Lời giải chi tiết :

    + Nhân cả tử và mẫu của \(A\) với \(2.4.6.....40\) ta được:

    \(A = \dfrac{{\left( {1.3.....39} \right).\left( {2.4.....40} \right)}}{{\left( {2.4.6.....40} \right).\left( {21.22.....40} \right)}}\)\( = \dfrac{{1.2.3.....39.40}}{{\left( {2.1} \right).\left( {2.2} \right).\left( {2.3} \right).....\left( {2.20} \right).\left( {21.22.....40} \right)}}\)

    \( = \dfrac{{1.2.3.....39.40}}{{{2^{20}}.\left( {1.2.3.....20.21.22.....40} \right)}}\)\( = \dfrac{1}{{{2^{20}}}}\)

    + Nhân cả tử và mẫu của \(B\) với \(2.4.6.....2n\) ta được:

    \(B = \dfrac{{\left( {1.3.....\left( {2n - 1} \right)} \right).\left( {2.4.....2n} \right)}}{{\left( {2.4.6.....2n} \right).\left( {\left( {n + 1} \right).\left( {n + 2} \right).....2n} \right)}}\)\( = \dfrac{{1.2.3.....\left( {2n - 1} \right).2n}}{{\left( {2.1} \right).\left( {2.2} \right).\left( {2.3} \right).....\left( {2.n} \right).\left( {\left( {n + 1} \right).\left( {n + 2} \right).....2n} \right)}}\)

    \( = \dfrac{{1.2.3.....\left( {2n - 1} \right).2n}}{{{2^n}.\left( {1.2.3.....n.\left( {n + 1} \right).\left( {n + 2} \right).....2n} \right)}}\)\( = \dfrac{1}{{{2^n}}}\)

    Vậy \(A = \dfrac{1}{{{2^{20}}}},B = \dfrac{1}{{{2^n}}}\)

    Câu 12 :

    Tìm phân số bằng với phân số \(\dfrac{{200}}{{520}}\) mà có tổng của tử và mẫu bằng \(306.\)

    • A.

      \(\dfrac{{84}}{{222}}\)

    • B.

      \(\dfrac{{200}}{{520}}\)

    • C.

      \(\dfrac{{85}}{{221}}\)

    • D.

      \(\dfrac{{100}}{{260}}\)

    Đáp án : C

    Phương pháp giải :

    - Tìm dạng tổng quát của phân số đã cho có dạng \(\dfrac{{a.k}}{{b.k}}\left( {k \in Z,k \ne 0} \right)\) 

    - Viết mối quan hệ của \(ak\) với \(bk\) dựa vào điều kiện bài cho rồi tìm \(k\)

    Lời giải chi tiết :

    Ta có: \(\dfrac{{200}}{{520}} = \dfrac{5}{{13}}\) nên có dạng tổng quát là \(\dfrac{{5k}}{{13k}}\left( {k \in Z,k \ne 0} \right)\)

    Do tổng và tử và mẫu của phân số cần tìm bằng \(306\) nên:

    \(\begin{array}{l}5k + 13k = 306\\18k = 306\\k = 306:18\\k = 17\end{array}\)

    Vậy phân số cần tìm là \(\dfrac{{5.17}}{{13.17}} = \dfrac{{85}}{{221}}\)

    Câu 13 :

    Viết dạng tổng quát của các phân số bằng với phân số \(\dfrac{{ - 12}}{{40}}\)

    • A.

      \(\dfrac{{ - 3k}}{{10k}},k \in Z\) 

    • B.

      \(\dfrac{{ - 3k}}{{10}},k \in Z,k \ne 0\)

    • C.

      \(\dfrac{{ - 3k}}{{10k}},k \in Z,k \ne 0\)

    • D.

      \(\dfrac{{ - 3}}{{10}}\)

    Đáp án : C

    Phương pháp giải :

    - Rút gọn phân số đã cho đến tối giản, chẳng hạn được phân số tối giản $\dfrac{m}{n};$

    - Dạng tổng quát của các phân số phải tìm là $\dfrac{{m.k}}{{n.k}}$ (\(k\) $ \in $ $\mathbb{Z}$, \(k \ne 0)\)

    Lời giải chi tiết :

    - Rút gọn phân số: \(\dfrac{{ - 12}}{{40}} = \dfrac{{ - 12:4}}{{40:4}} = \dfrac{{ - 3}}{{10}}\)

    - Dạng tổng quát của phân số đã cho là: \(\dfrac{{ - 3k}}{{10k}}\) với \(k \in Z,k \ne 0\)

    Câu 14 :

    Tìm phân số tối giản \(\dfrac{a}{b}\) biết rằng lấy tử cộng với \(6,\) lấy mẫu cộng với \(14\) thì ta được phân số bằng \(\dfrac{3}{7}.\)

    • A.

      \(\dfrac{4}{5}\)

    • B.

      \(\dfrac{{ 7}}{3}\)

    • C.

      \(\dfrac{3}{7}\)

    • D.

      \(\dfrac{{ - 3}}{7}\)

    Đáp án : C

    Phương pháp giải :

    Dựa vào điều kiện của để bài, đưa về dạng 2 phân số bằng nhau để tính toán.

    Lời giải chi tiết :

    Ta có:

    \(\begin{array}{l}\dfrac{{a + 6}}{{b + 14}} = \dfrac{3}{7}\\7.(a + 6) = 3.(b + 14)\\7{\rm{a}} + 42 = 3b + 42\\7{\rm{a}} = 3b\\\dfrac{a}{b} = \dfrac{3}{7}\end{array}\)

    Câu 15 :

    Cho các phân số \(\dfrac{6}{{n + 8}}; \dfrac{7}{{n + 9}}; \dfrac{8}{{n + 10}};...;\dfrac{{35}}{{n + 37}}.\) Tìm số tự nhiên \(n\) nhỏ nhất để các phân số trên tối giản.

    • A.

      \(35\)

    • B.

      \(34\)

    • C.

      \(37\)

    • D.

      \(36\)

    Đáp án : A

    Phương pháp giải :

    Đưa các phân số về dạng \(\dfrac{a}{{a + (n + 2)}}\) rồi lập luận

    Lời giải chi tiết :

    Các phân số đã cho đều có dạng \(\dfrac{a}{{a + (n + 2)}}\)

    Và tối giản nếu \(a\) và \(n + 2\) nguyên tố cùng nhau

    Vì: \(\left[ {a + (n + 2)} \right] - a = n + 2\) với

    \(a = 6;7;8;.....;34;35\)

    Do đó \(n + 2\) nguyên tố cùng nhau với các số \(6;7;8;.....;34;35\)

    Số tự nhiên \(n + 2\) nhỏ nhất thỏa mãn tính chất này là \(37\)

    Ta có \(n + 2 = 37\) nên \(n = 37 - 2 = 35\)

    Vậy số tự nhiên nhỏ nhất cần tìm là \(35\)

    Câu 16 :

    Rút gọn phân số \(\dfrac{{ - 12a}}{{24}}\) , \(a \in \mathbb{Z}\) ta được:

    • A.

      \(\dfrac{a}{2}\)

    • B.

      \(\dfrac{1}{2}\)

    • C.

      \(\dfrac{{ - 1}}{2}\)

    • D.

      \(\dfrac{{ - a}}{2}\)

    Đáp án : D

    Lời giải chi tiết :

    Ta có: \(\dfrac{{ - 12a}}{{24}} = \dfrac{{\left( { - 1} \right).12.a}}{{12.2}} = \dfrac{{\left( { - 1} \right).a}}{2} = \dfrac{{ - a}}{2}\).

    Câu 17 :

    Qui đồng mẫu số các phân số \(\dfrac{{11}}{{12}};\dfrac{{15}}{{16}};\dfrac{{23}}{{20}}\) ta được các phân số lần lượt là

    • A.

      \(\dfrac{{220}}{{240}};\dfrac{{225}}{{240}};\dfrac{{276}}{{240}}\)

    • B.

      \(\dfrac{{225}}{{240}};\dfrac{{220}}{{240}};\dfrac{{276}}{{240}}\)

    • C.

      \(\dfrac{{225}}{{240}};\dfrac{{276}}{{240}};\dfrac{{220}}{{240}}\)

    • D.

      \(\dfrac{{220}}{{240}};\dfrac{{276}}{{240}};\dfrac{{225}}{{240}}\)

    Đáp án : A

    Phương pháp giải :

    Bước 1: Tìm mẫu số chung $\left( {MSC} \right)$ của ba phân số trên: Có thể chọn $MSC = BCNN\left( {16,12,20} \right)$Bước 2: Tìm thừa số phụ tương ứng bằng cách lấy $MSC$ chia mẫu số riêng của mỗi phân số Bước 3: Quy đồng mẫu bằng cách nhân cả tử số mà mẫu số của mỗi phân số với thừa số phụ tương ứng

    Lời giải chi tiết :

    Ta có: \(12 = {2^2}.3;16 = {2^4};20 = {2^2}.5\)

    Do đó \(MSC = {2^4}.3.5 = 240\)

    \(\dfrac{{11}}{{12}} = \dfrac{{11.20}}{{12.20}} = \dfrac{{220}}{{240}};\)\(\dfrac{{15}}{{16}} = \dfrac{{15.15}}{{16.15}} = \dfrac{{225}}{{240}};\)\(\dfrac{{23}}{{20}} = \dfrac{{23.12}}{{20.12}} = \dfrac{{276}}{{240}}\)

    Vậy các phân số sau khi quy đồng lần lượt là: \(\dfrac{{220}}{{240}};\dfrac{{225}}{{240}};\dfrac{{276}}{{240}}\)

    Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Trắc nghiệm Các dạng toán về tính chất cơ bản của phân số Toán 6 Chân trời sáng tạo – nội dung then chốt trong chuyên mục toán 6 trên nền tảng toán math. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

    Trắc nghiệm Các dạng toán về tính chất cơ bản của phân số Toán 6 Chân trời sáng tạo

    Phân số là một khái niệm quan trọng trong toán học, đặc biệt là ở chương trình Toán lớp 6. Việc nắm vững các tính chất cơ bản của phân số là nền tảng để giải quyết các bài toán phức tạp hơn ở các lớp trên. Bài viết này sẽ cung cấp một tổng quan về các dạng toán liên quan đến tính chất cơ bản của phân số, cùng với các ví dụ minh họa và bài tập trắc nghiệm để giúp các em học sinh hiểu rõ hơn về chủ đề này.

    I. Các khái niệm cơ bản về phân số

    Trước khi đi vào các dạng toán, chúng ta cần ôn lại một số khái niệm cơ bản về phân số:

    • Phân số: Là biểu thức của một tỉ lệ giữa hai số nguyên, trong đó số chia khác 0. Phân số có dạng a/b, trong đó a là tử số và b là mẫu số.
    • Phân số tối giản: Là phân số mà tử số và mẫu số không có ước chung nào khác 1.
    • Phân số bằng nhau: Hai phân số được gọi là bằng nhau nếu chúng biểu diễn cùng một tỉ lệ.

    II. Các dạng toán về tính chất cơ bản của phân số

    1. Rút gọn phân số:

      Rút gọn phân số là việc chia cả tử số và mẫu số của phân số cho ước chung lớn nhất của chúng để được phân số tối giản. Ví dụ:

      12/18 = (12:6)/(18:6) = 2/3

    2. Quy đồng mẫu số:

      Quy đồng mẫu số là việc biến đổi các phân số có mẫu số khác nhau thành các phân số có cùng mẫu số. Để quy đồng mẫu số, ta tìm bội chung nhỏ nhất (BCNN) của các mẫu số, sau đó nhân cả tử số và mẫu số của mỗi phân số với một số sao cho mẫu số bằng BCNN.

      Ví dụ: Quy đồng mẫu số của 1/2 và 1/3

      BCNN(2,3) = 6

      1/2 = (1*3)/(2*3) = 3/6

      1/3 = (1*2)/(3*2) = 2/6

    3. So sánh phân số:

      Có nhiều cách để so sánh phân số:

      • Quy đồng mẫu số: Sau khi quy đồng mẫu số, phân số nào có tử số lớn hơn thì phân số đó lớn hơn.
      • Quy đồng tử số: Sau khi quy đồng tử số, phân số nào có mẫu số nhỏ hơn thì phân số đó lớn hơn.
      • So sánh với 1: Nếu phân số lớn hơn 1 thì nó lớn hơn các phân số nhỏ hơn 1.
    4. Tìm phân số bằng nhau:

      Để tìm phân số bằng nhau, ta nhân cả tử số và mẫu số của phân số đã cho với cùng một số khác 0.

      Ví dụ: Các phân số bằng nhau với 1/2 là 2/4, 3/6, 4/8,...

    III. Bài tập trắc nghiệm

    Dưới đây là một số bài tập trắc nghiệm để các em luyện tập:

    1. Rút gọn phân số 24/36.
    2. Quy đồng mẫu số của 2/5 và 3/4.
    3. So sánh phân số 1/3 và 2/5.
    4. Tìm phân số bằng nhau với 3/7.

    IV. Lời khuyên khi làm bài tập về phân số

    • Luôn kiểm tra xem phân số đã được rút gọn đến tối giản chưa.
    • Khi quy đồng mẫu số, hãy tìm BCNN của các mẫu số một cách chính xác.
    • Sử dụng các phương pháp so sánh phân số một cách linh hoạt để tìm ra đáp án đúng.
    • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng giải toán.

    Hy vọng bài viết này đã cung cấp cho các em những kiến thức hữu ích về các dạng toán liên quan đến tính chất cơ bản của phân số. Chúc các em học tập tốt!

    Tài liệu, đề thi và đáp án Toán 6