Logo Header
  1. Môn Toán
  2. Trắc nghiệm Bài tập ôn tập chương 6: Số thập phân Toán 6 Chân trời sáng tạo

Trắc nghiệm Bài tập ôn tập chương 6: Số thập phân Toán 6 Chân trời sáng tạo

Ôn tập chương 6: Số thập phân Toán 6 Chân trời sáng tạo với bài tập trắc nghiệm

Chương 6: Số thập phân là một phần quan trọng trong chương trình Toán 6 Chân trời sáng tạo. Để giúp các em học sinh ôn tập và củng cố kiến thức một cách hiệu quả, giaitoan.edu.vn cung cấp bộ trắc nghiệm Bài tập ôn tập chương 6: Số thập phân Toán 6 Chân trời sáng tạo với nhiều dạng bài tập khác nhau.

Bài tập được thiết kế bám sát chương trình học, giúp các em làm quen với các dạng câu hỏi thường gặp trong các bài kiểm tra và thi học kỳ. Đồng thời, đáp án chi tiết đi kèm sẽ giúp các em hiểu rõ hơn về cách giải và tự đánh giá năng lực của mình.

Đề bài

    Câu 1 :

    Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:

    • A.

      \(1,2\)

    • B.

      \(1,4\)

    • C.

      \(1,5\)

    • D.

      \(1,8\)

    Câu 2 :

    Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:

    • A.

      \(2,5\)

    • B.

      \(5,2\)

    • C.

      \(0,4\)

    • D.

      \(0,04\)

    Câu 3 :

    Số thập phân \(3,015\) được chuyển thành phân số là:

    • A.

      \(\dfrac{{3015}}{{10}}\) 

    • B.

      \(\dfrac{{3015}}{{100}}\)

    • C.

      \(\dfrac{{3015}}{{1000}}\) 

    • D.

      \(\dfrac{{3015}}{{10000}}\)

    Câu 4 :

    Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:

    • A.

      $35$

    • B.

      $36$

    • C.

      $37$

    • D.

      $34$

    Câu 5 :

    Tìm một phân số ở giữa hai phân số \(\dfrac{1}{{10}}\) và \(\dfrac{2}{{10}}\).

    • A.

      \(\dfrac{3}{{10}}\)

    • B.

      \(\dfrac{{15}}{{10}}\)

    • C.

      \(\dfrac{{15}}{{100}}\) 

    • D.

      Không có phân số nào thỏa mãn.

    Câu 6 :

    Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).

    • A.

      \(x = 4\)

    • B.

      \(x = - 4\)

    • C.

      \(x = 5\)

    • D.

      \(x = - 0,2\)

    Câu 7 :

    Trên đĩa có 64 quả táo. Hoa ăn hết 25% số táo. Sau đó Hùng ăn $\dfrac{3}{8}$ số táo còn lại. Hỏi trên đĩa còn bao nhiêu quả táo?

    • A.

      \(30\) quả

    • B.

      \(48\) quả

    • C.

      \(18\) quả

    • D.

      \(36\) quả

    Câu 8 :

    Lớp 6A có 48 học sinh. Số học sinh giỏi bằng 18,75% số học sinh cả lớp. Số học sinh trung bình bằng 300% số học sinh giỏi. Còn lại là học sinh khá. Tính tỉ số phần trăm số học sinh giỏi so với số học sinh khá.

    • A.

      \(50\% \)

    • B.

      \(125\% \)

    • C.

      \(75\% \)

    • D.

      \(70\% \)

    Câu 9 :

    Một nhà máy có ba phân xưởng, số công nhân của phân xưởng 1 bằng \(36\% \) tổng số công nhân của nhà máy. Số công nhân của phân xưởng 2 bằng \(\dfrac{3}{5}\) số công nhân của phân xưởng 3. Biết số công nhân của phân xưởng 1 là 18 người. Tính số công nhân của phân xưởng 3.

    • A.

      \(12\)

    • B.

      \(20\)

    • C.

      $18$

    • D.

      \(25\)

    Câu 10 :

    Tìm x biết \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313}}{{151515}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313}}{{636363}} + \dfrac{{131313}}{{999999}}} \right) = - 5\)

    • A.

      \(x = - 40\)

    • B.

      \(x = 40\)

    • C.

      \(x = - 160\)

    • D.

      \(x = 160\)

    Lời giải và đáp án

    Câu 1 :

    Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:

    • A.

      \(1,2\)

    • B.

      \(1,4\)

    • C.

      \(1,5\)

    • D.

      \(1,8\)

    Đáp án : B

    Phương pháp giải :

    Chuyển hỗn số đó về phân số thập phân, sau đó viết dưới dạng số thập phân.

    Lời giải chi tiết :

    \(1\dfrac{2}{5} = \dfrac{{1.5 + 2}}{5} = \dfrac{7}{5} = \dfrac{{14}}{{10}} = 1,4.\)

    Câu 2 :

    Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:

    • A.

      \(2,5\)

    • B.

      \(5,2\)

    • C.

      \(0,4\)

    • D.

      \(0,04\)

    Đáp án : C

    Phương pháp giải :

    Chuyển phân số đó về phân số thập phân rồi viết dưới dạng số thập phân.

    Lời giải chi tiết :

    \(\dfrac{2}{5} = \dfrac{4}{{10}} = 0,4.\)

    Câu 3 :

    Số thập phân \(3,015\) được chuyển thành phân số là:

    • A.

      \(\dfrac{{3015}}{{10}}\) 

    • B.

      \(\dfrac{{3015}}{{100}}\)

    • C.

      \(\dfrac{{3015}}{{1000}}\) 

    • D.

      \(\dfrac{{3015}}{{10000}}\)

    Đáp án : C

    Phương pháp giải :

    Áp dụng qui tắc chuyển từ số thập phân về phân số.

    Lời giải chi tiết :

    \(3,015 = \dfrac{{3015}}{{1000}}\)

    Câu 4 :

    Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:

    • A.

      $35$

    • B.

      $36$

    • C.

      $37$

    • D.

      $34$

    Đáp án : B

    Phương pháp giải :

    Áp dụng qui tắc so sánh số thập phân để tìm được $x$

    Lời giải chi tiết :

    Ta có: \(35,67 < x < 36,05\) và \(x\) là số tự nhiên nên \(x = 36\).

    Câu 5 :

    Tìm một phân số ở giữa hai phân số \(\dfrac{1}{{10}}\) và \(\dfrac{2}{{10}}\).

    • A.

      \(\dfrac{3}{{10}}\)

    • B.

      \(\dfrac{{15}}{{10}}\)

    • C.

      \(\dfrac{{15}}{{100}}\) 

    • D.

      Không có phân số nào thỏa mãn.

    Đáp án : C

    Phương pháp giải :

    Chuyển hai phân số đã cho về số thập phân, sau đó ta áp dụng phương pháp so sánh số thập phân.

    Lời giải chi tiết :

    Ta có: \(\dfrac{1}{{10}} = 0,1;\;\;\,\dfrac{2}{{10}} = 0,2\)

    Vậy số cần tìm phải thỏa mãn: \(0,1 < x < 0,2\) nên trong các đáp án trên thì \(x\) chỉ có thể là \(0,15 = \dfrac{{15}}{{100}}.\)

    Câu 6 :

    Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).

    • A.

      \(x = 4\)

    • B.

      \(x = - 4\)

    • C.

      \(x = 5\)

    • D.

      \(x = - 0,2\)

    Đáp án : D

    Phương pháp giải :

    Chuyển phân số về số thập phân, áp dụng qui tắc nhân, chia số thập phân để tìm \(x\).

    Lời giải chi tiết :

    \(\begin{array}{l}2,4.x = \dfrac{{ - 6}}{5}.0,4\\2,4.x = - 1,2.0,4\\2,4.x = - 0,48\\x = - 0,48:2,4\\x = - 0,2.\end{array}\)

    Câu 7 :

    Trên đĩa có 64 quả táo. Hoa ăn hết 25% số táo. Sau đó Hùng ăn $\dfrac{3}{8}$ số táo còn lại. Hỏi trên đĩa còn bao nhiêu quả táo?

    • A.

      \(30\) quả

    • B.

      \(48\) quả

    • C.

      \(18\) quả

    • D.

      \(36\) quả

    Đáp án : A

    Phương pháp giải :

    Sử dụng cách tính giá trị phân số của một số cho trước

    Muốn tìm \(\dfrac{m}{n}\) của số \(b\) cho trước, ta tính \(b.\dfrac{m}{n}\) \(\left( {m,n \in \mathbb{N},n \ne 0} \right)\)

    Lời giải chi tiết :

    Hoa ăn số táo là \(25\% .64 = 16\) quả.

    Số táo còn lại là \(64 - 16 = 48\) quả

    Hùng ăn số táo là \(\dfrac{3}{8}.48 = 18\) quả.

    Số táo còn lại sau khi Hùng ăn là \(48 - 18 = 30\) quả.

    Câu 8 :

    Lớp 6A có 48 học sinh. Số học sinh giỏi bằng 18,75% số học sinh cả lớp. Số học sinh trung bình bằng 300% số học sinh giỏi. Còn lại là học sinh khá. Tính tỉ số phần trăm số học sinh giỏi so với số học sinh khá.

    • A.

      \(50\% \)

    • B.

      \(125\% \)

    • C.

      \(75\% \)

    • D.

      \(70\% \)

    Đáp án : C

    Phương pháp giải :

    + Tính số học sinh giỏi, học sinh trung bình và học sinh khá

    + Tính tỉ số phần trăm: Muốn tìm tỉ số phần trăm của hai số \(a\) và \(b\) , ta nhân \(a\) với \(100\) rồi chia cho \(b\) và viết kí hiệu % vào kết quả: \(\dfrac{{a.100}}{b}\% \)

    Lời giải chi tiết :

    Số học sinh giỏi của lớp là \(18,75\% .48 = 9\) học sinh

    Số học sinh trung bình là \(9.300\% = 27\) học sinh

    Số học sinh khá là \(48 - 9 - 27 = 12\) học sinh

    Tỉ số phần trăm số học sinh khá và số học sinh giỏi là: \(\dfrac{9}{{12}}.100\% = 75\% .\)

    Câu 9 :

    Một nhà máy có ba phân xưởng, số công nhân của phân xưởng 1 bằng \(36\% \) tổng số công nhân của nhà máy. Số công nhân của phân xưởng 2 bằng \(\dfrac{3}{5}\) số công nhân của phân xưởng 3. Biết số công nhân của phân xưởng 1 là 18 người. Tính số công nhân của phân xưởng 3.

    • A.

      \(12\)

    • B.

      \(20\)

    • C.

      $18$

    • D.

      \(25\)

    Đáp án : B

    Phương pháp giải :

    Sử dụng cách giá trị phân số của một số cho trước và cách tìm một số biết giá trị phân số của nó để tính toán theo các bước:

    + Tính số công nhân của cả nhà máy

    + Tính số công nhân của cả hai phân xưởng 2 và 3

    + Tính số công nhân của phân xưởng 2

    + Tính số công nhân của phân xưởng 3

    Lời giải chi tiết :

    Số công nhân của cả nhà máy là \(18:36\% = 50\) công nhân

    Số công nhân của phân xưởng 2 và phân xưởng 3 là \(50 - 18 = 32\) công nhân

    Vì số công nhân của phân xưởng 2 bằng \(\dfrac{3}{5}\) số công nhân của phân xưởng 3 nên số công nhân của phân xưởng 2 bằng \(\dfrac{3}{{3 + 5}} = \dfrac{3}{8}\) số công nhân của cả hai phân xưởng.

    Số công nhân của phân xưởng 2 là \(32.\dfrac{3}{8} = 12\) công nhân

    Số công nhân của phân xưởng ba là \(32 - 12 = 20\) công nhân

    Câu 10 :

    Tìm x biết \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313}}{{151515}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313}}{{636363}} + \dfrac{{131313}}{{999999}}} \right) = - 5\)

    • A.

      \(x = - 40\)

    • B.

      \(x = 40\)

    • C.

      \(x = - 160\)

    • D.

      \(x = 160\)

    Đáp án : D

    Phương pháp giải :

    Rút gọn biểu thức trong ngoặc

    Sử dụng qui tắc chuyển vế đổi dấu để tìm x

    Lời giải chi tiết :

    Ta có \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313}}{{151515}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313}}{{636363}} + \dfrac{{131313}}{{999999}}} \right) = - 5\)

    \(\dfrac{1}{4}.x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313:10101}}{{151515:10101}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313:10101}}{{636363:10101}} + \dfrac{{131313:10101}}{{999999:10101}}} \right) = - 5\)

    \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{13}}{{15}} + \dfrac{{13}}{{35}} + \dfrac{{13}}{{63}} + \dfrac{{13}}{{99}}} \right) = - 5\)

    \(25\% .x - 70\dfrac{{10}}{{11}}:\left[ {13.\left( {\dfrac{1}{{3.5}} + \dfrac{1}{{5.7}} + \dfrac{1}{{7.9}} + \dfrac{1}{{9.11}}} \right)} \right] = - 5\)

    \(25\% .x - 70\dfrac{{10}}{{11}}:\left[ {\dfrac{{13}}{2}.\left( {\dfrac{1}{3} - \dfrac{1}{5} + \dfrac{1}{5} - \dfrac{1}{7} + \dfrac{1}{7} - \dfrac{1}{9} + \dfrac{1}{9} - \dfrac{1}{{11}}} \right)} \right] = - 5\)

    \(25\% .x - 70\dfrac{{10}}{{11}}:\left[ {\dfrac{{13}}{2}.\left( {\dfrac{1}{3} - \dfrac{1}{{11}}} \right)} \right] = - 5\)

    \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{13}}{2}.\dfrac{8}{{33}}} \right) = - 5\)

    \(\begin{array}{l}25\% .x - \dfrac{{780}}{{11}}:\dfrac{{52}}{{33}} = - 5\\25\% .x - \dfrac{{780}}{{11}}.\dfrac{{33}}{{52}} = - 5\\25\% .x - 45 = - 5\\25\% .x = - 5 + 45\\25\% .x = 40\\x = 40:\dfrac{{25}}{{100}}\\x = 160\end{array}\)

    Lời giải và đáp án

      Câu 1 :

      Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:

      • A.

        \(1,2\)

      • B.

        \(1,4\)

      • C.

        \(1,5\)

      • D.

        \(1,8\)

      Câu 2 :

      Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:

      • A.

        \(2,5\)

      • B.

        \(5,2\)

      • C.

        \(0,4\)

      • D.

        \(0,04\)

      Câu 3 :

      Số thập phân \(3,015\) được chuyển thành phân số là:

      • A.

        \(\dfrac{{3015}}{{10}}\) 

      • B.

        \(\dfrac{{3015}}{{100}}\)

      • C.

        \(\dfrac{{3015}}{{1000}}\) 

      • D.

        \(\dfrac{{3015}}{{10000}}\)

      Câu 4 :

      Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:

      • A.

        $35$

      • B.

        $36$

      • C.

        $37$

      • D.

        $34$

      Câu 5 :

      Tìm một phân số ở giữa hai phân số \(\dfrac{1}{{10}}\) và \(\dfrac{2}{{10}}\).

      • A.

        \(\dfrac{3}{{10}}\)

      • B.

        \(\dfrac{{15}}{{10}}\)

      • C.

        \(\dfrac{{15}}{{100}}\) 

      • D.

        Không có phân số nào thỏa mãn.

      Câu 6 :

      Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).

      • A.

        \(x = 4\)

      • B.

        \(x = - 4\)

      • C.

        \(x = 5\)

      • D.

        \(x = - 0,2\)

      Câu 7 :

      Trên đĩa có 64 quả táo. Hoa ăn hết 25% số táo. Sau đó Hùng ăn $\dfrac{3}{8}$ số táo còn lại. Hỏi trên đĩa còn bao nhiêu quả táo?

      • A.

        \(30\) quả

      • B.

        \(48\) quả

      • C.

        \(18\) quả

      • D.

        \(36\) quả

      Câu 8 :

      Lớp 6A có 48 học sinh. Số học sinh giỏi bằng 18,75% số học sinh cả lớp. Số học sinh trung bình bằng 300% số học sinh giỏi. Còn lại là học sinh khá. Tính tỉ số phần trăm số học sinh giỏi so với số học sinh khá.

      • A.

        \(50\% \)

      • B.

        \(125\% \)

      • C.

        \(75\% \)

      • D.

        \(70\% \)

      Câu 9 :

      Một nhà máy có ba phân xưởng, số công nhân của phân xưởng 1 bằng \(36\% \) tổng số công nhân của nhà máy. Số công nhân của phân xưởng 2 bằng \(\dfrac{3}{5}\) số công nhân của phân xưởng 3. Biết số công nhân của phân xưởng 1 là 18 người. Tính số công nhân của phân xưởng 3.

      • A.

        \(12\)

      • B.

        \(20\)

      • C.

        $18$

      • D.

        \(25\)

      Câu 10 :

      Tìm x biết \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313}}{{151515}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313}}{{636363}} + \dfrac{{131313}}{{999999}}} \right) = - 5\)

      • A.

        \(x = - 40\)

      • B.

        \(x = 40\)

      • C.

        \(x = - 160\)

      • D.

        \(x = 160\)

      Câu 1 :

      Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:

      • A.

        \(1,2\)

      • B.

        \(1,4\)

      • C.

        \(1,5\)

      • D.

        \(1,8\)

      Đáp án : B

      Phương pháp giải :

      Chuyển hỗn số đó về phân số thập phân, sau đó viết dưới dạng số thập phân.

      Lời giải chi tiết :

      \(1\dfrac{2}{5} = \dfrac{{1.5 + 2}}{5} = \dfrac{7}{5} = \dfrac{{14}}{{10}} = 1,4.\)

      Câu 2 :

      Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:

      • A.

        \(2,5\)

      • B.

        \(5,2\)

      • C.

        \(0,4\)

      • D.

        \(0,04\)

      Đáp án : C

      Phương pháp giải :

      Chuyển phân số đó về phân số thập phân rồi viết dưới dạng số thập phân.

      Lời giải chi tiết :

      \(\dfrac{2}{5} = \dfrac{4}{{10}} = 0,4.\)

      Câu 3 :

      Số thập phân \(3,015\) được chuyển thành phân số là:

      • A.

        \(\dfrac{{3015}}{{10}}\) 

      • B.

        \(\dfrac{{3015}}{{100}}\)

      • C.

        \(\dfrac{{3015}}{{1000}}\) 

      • D.

        \(\dfrac{{3015}}{{10000}}\)

      Đáp án : C

      Phương pháp giải :

      Áp dụng qui tắc chuyển từ số thập phân về phân số.

      Lời giải chi tiết :

      \(3,015 = \dfrac{{3015}}{{1000}}\)

      Câu 4 :

      Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:

      • A.

        $35$

      • B.

        $36$

      • C.

        $37$

      • D.

        $34$

      Đáp án : B

      Phương pháp giải :

      Áp dụng qui tắc so sánh số thập phân để tìm được $x$

      Lời giải chi tiết :

      Ta có: \(35,67 < x < 36,05\) và \(x\) là số tự nhiên nên \(x = 36\).

      Câu 5 :

      Tìm một phân số ở giữa hai phân số \(\dfrac{1}{{10}}\) và \(\dfrac{2}{{10}}\).

      • A.

        \(\dfrac{3}{{10}}\)

      • B.

        \(\dfrac{{15}}{{10}}\)

      • C.

        \(\dfrac{{15}}{{100}}\) 

      • D.

        Không có phân số nào thỏa mãn.

      Đáp án : C

      Phương pháp giải :

      Chuyển hai phân số đã cho về số thập phân, sau đó ta áp dụng phương pháp so sánh số thập phân.

      Lời giải chi tiết :

      Ta có: \(\dfrac{1}{{10}} = 0,1;\;\;\,\dfrac{2}{{10}} = 0,2\)

      Vậy số cần tìm phải thỏa mãn: \(0,1 < x < 0,2\) nên trong các đáp án trên thì \(x\) chỉ có thể là \(0,15 = \dfrac{{15}}{{100}}.\)

      Câu 6 :

      Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).

      • A.

        \(x = 4\)

      • B.

        \(x = - 4\)

      • C.

        \(x = 5\)

      • D.

        \(x = - 0,2\)

      Đáp án : D

      Phương pháp giải :

      Chuyển phân số về số thập phân, áp dụng qui tắc nhân, chia số thập phân để tìm \(x\).

      Lời giải chi tiết :

      \(\begin{array}{l}2,4.x = \dfrac{{ - 6}}{5}.0,4\\2,4.x = - 1,2.0,4\\2,4.x = - 0,48\\x = - 0,48:2,4\\x = - 0,2.\end{array}\)

      Câu 7 :

      Trên đĩa có 64 quả táo. Hoa ăn hết 25% số táo. Sau đó Hùng ăn $\dfrac{3}{8}$ số táo còn lại. Hỏi trên đĩa còn bao nhiêu quả táo?

      • A.

        \(30\) quả

      • B.

        \(48\) quả

      • C.

        \(18\) quả

      • D.

        \(36\) quả

      Đáp án : A

      Phương pháp giải :

      Sử dụng cách tính giá trị phân số của một số cho trước

      Muốn tìm \(\dfrac{m}{n}\) của số \(b\) cho trước, ta tính \(b.\dfrac{m}{n}\) \(\left( {m,n \in \mathbb{N},n \ne 0} \right)\)

      Lời giải chi tiết :

      Hoa ăn số táo là \(25\% .64 = 16\) quả.

      Số táo còn lại là \(64 - 16 = 48\) quả

      Hùng ăn số táo là \(\dfrac{3}{8}.48 = 18\) quả.

      Số táo còn lại sau khi Hùng ăn là \(48 - 18 = 30\) quả.

      Câu 8 :

      Lớp 6A có 48 học sinh. Số học sinh giỏi bằng 18,75% số học sinh cả lớp. Số học sinh trung bình bằng 300% số học sinh giỏi. Còn lại là học sinh khá. Tính tỉ số phần trăm số học sinh giỏi so với số học sinh khá.

      • A.

        \(50\% \)

      • B.

        \(125\% \)

      • C.

        \(75\% \)

      • D.

        \(70\% \)

      Đáp án : C

      Phương pháp giải :

      + Tính số học sinh giỏi, học sinh trung bình và học sinh khá

      + Tính tỉ số phần trăm: Muốn tìm tỉ số phần trăm của hai số \(a\) và \(b\) , ta nhân \(a\) với \(100\) rồi chia cho \(b\) và viết kí hiệu % vào kết quả: \(\dfrac{{a.100}}{b}\% \)

      Lời giải chi tiết :

      Số học sinh giỏi của lớp là \(18,75\% .48 = 9\) học sinh

      Số học sinh trung bình là \(9.300\% = 27\) học sinh

      Số học sinh khá là \(48 - 9 - 27 = 12\) học sinh

      Tỉ số phần trăm số học sinh khá và số học sinh giỏi là: \(\dfrac{9}{{12}}.100\% = 75\% .\)

      Câu 9 :

      Một nhà máy có ba phân xưởng, số công nhân của phân xưởng 1 bằng \(36\% \) tổng số công nhân của nhà máy. Số công nhân của phân xưởng 2 bằng \(\dfrac{3}{5}\) số công nhân của phân xưởng 3. Biết số công nhân của phân xưởng 1 là 18 người. Tính số công nhân của phân xưởng 3.

      • A.

        \(12\)

      • B.

        \(20\)

      • C.

        $18$

      • D.

        \(25\)

      Đáp án : B

      Phương pháp giải :

      Sử dụng cách giá trị phân số của một số cho trước và cách tìm một số biết giá trị phân số của nó để tính toán theo các bước:

      + Tính số công nhân của cả nhà máy

      + Tính số công nhân của cả hai phân xưởng 2 và 3

      + Tính số công nhân của phân xưởng 2

      + Tính số công nhân của phân xưởng 3

      Lời giải chi tiết :

      Số công nhân của cả nhà máy là \(18:36\% = 50\) công nhân

      Số công nhân của phân xưởng 2 và phân xưởng 3 là \(50 - 18 = 32\) công nhân

      Vì số công nhân của phân xưởng 2 bằng \(\dfrac{3}{5}\) số công nhân của phân xưởng 3 nên số công nhân của phân xưởng 2 bằng \(\dfrac{3}{{3 + 5}} = \dfrac{3}{8}\) số công nhân của cả hai phân xưởng.

      Số công nhân của phân xưởng 2 là \(32.\dfrac{3}{8} = 12\) công nhân

      Số công nhân của phân xưởng ba là \(32 - 12 = 20\) công nhân

      Câu 10 :

      Tìm x biết \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313}}{{151515}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313}}{{636363}} + \dfrac{{131313}}{{999999}}} \right) = - 5\)

      • A.

        \(x = - 40\)

      • B.

        \(x = 40\)

      • C.

        \(x = - 160\)

      • D.

        \(x = 160\)

      Đáp án : D

      Phương pháp giải :

      Rút gọn biểu thức trong ngoặc

      Sử dụng qui tắc chuyển vế đổi dấu để tìm x

      Lời giải chi tiết :

      Ta có \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313}}{{151515}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313}}{{636363}} + \dfrac{{131313}}{{999999}}} \right) = - 5\)

      \(\dfrac{1}{4}.x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313:10101}}{{151515:10101}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313:10101}}{{636363:10101}} + \dfrac{{131313:10101}}{{999999:10101}}} \right) = - 5\)

      \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{13}}{{15}} + \dfrac{{13}}{{35}} + \dfrac{{13}}{{63}} + \dfrac{{13}}{{99}}} \right) = - 5\)

      \(25\% .x - 70\dfrac{{10}}{{11}}:\left[ {13.\left( {\dfrac{1}{{3.5}} + \dfrac{1}{{5.7}} + \dfrac{1}{{7.9}} + \dfrac{1}{{9.11}}} \right)} \right] = - 5\)

      \(25\% .x - 70\dfrac{{10}}{{11}}:\left[ {\dfrac{{13}}{2}.\left( {\dfrac{1}{3} - \dfrac{1}{5} + \dfrac{1}{5} - \dfrac{1}{7} + \dfrac{1}{7} - \dfrac{1}{9} + \dfrac{1}{9} - \dfrac{1}{{11}}} \right)} \right] = - 5\)

      \(25\% .x - 70\dfrac{{10}}{{11}}:\left[ {\dfrac{{13}}{2}.\left( {\dfrac{1}{3} - \dfrac{1}{{11}}} \right)} \right] = - 5\)

      \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{13}}{2}.\dfrac{8}{{33}}} \right) = - 5\)

      \(\begin{array}{l}25\% .x - \dfrac{{780}}{{11}}:\dfrac{{52}}{{33}} = - 5\\25\% .x - \dfrac{{780}}{{11}}.\dfrac{{33}}{{52}} = - 5\\25\% .x - 45 = - 5\\25\% .x = - 5 + 45\\25\% .x = 40\\x = 40:\dfrac{{25}}{{100}}\\x = 160\end{array}\)

      Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Trắc nghiệm Bài tập ôn tập chương 6: Số thập phân Toán 6 Chân trời sáng tạo – nội dung then chốt trong chuyên mục giải bài tập toán lớp 6 trên nền tảng soạn toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

      Bài tập ôn tập chương 6: Số thập phân Toán 6 Chân trời sáng tạo

      Chương 6: Số thập phân trong chương trình Toán 6 Chân trời sáng tạo là nền tảng quan trọng để học sinh tiếp cận với các khái niệm toán học phức tạp hơn ở các lớp trên. Việc nắm vững kiến thức về số thập phân, các phép toán với số thập phân, và ứng dụng của chúng trong thực tế là vô cùng cần thiết.

      I. Khái niệm cơ bản về số thập phân

      Số thập phân là cách biểu diễn các số không nguyên bằng cách sử dụng dấu phẩy (,) để phân tách phần nguyên và phần thập. Ví dụ: 3,5; 0,75; -2,14 là các số thập phân.

      • Phần nguyên: Là phần số tự nhiên đứng trước dấu phẩy.
      • Phần thập: Là phần số đứng sau dấu phẩy.

      II. Các phép toán với số thập phân

      Các phép toán cộng, trừ, nhân, chia với số thập phân được thực hiện tương tự như các phép toán với số tự nhiên, nhưng cần chú ý đến việc đặt dấu phẩy và căn chỉnh các hàng.

      1. Phép cộng: Cộng các phần thập như cộng các số tự nhiên, sau đó đặt dấu phẩy ở vị trí tương ứng.
      2. Phép trừ: Tương tự như phép cộng, nhưng thực hiện phép trừ thay vì phép cộng.
      3. Phép nhân: Nhân các số như nhân các số tự nhiên, sau đó đếm số chữ số sau dấu phẩy ở cả hai số bị nhân và đặt dấu phẩy ở vị trí tương ứng trong kết quả.
      4. Phép chia: Thực hiện phép chia như chia các số tự nhiên, sau đó đặt dấu phẩy ở vị trí tương ứng.

      III. So sánh số thập phân

      Để so sánh hai số thập phân, ta thực hiện như sau:

      1. Nếu hai số thập phân có phần nguyên khác nhau, số thập phân nào có phần nguyên lớn hơn thì lớn hơn.
      2. Nếu hai số thập phân có phần nguyên bằng nhau, ta so sánh phần thập. Số thập phân nào có chữ số đầu tiên của phần thập lớn hơn thì lớn hơn.
      3. Nếu các chữ số đầu tiên của phần thập bằng nhau, ta so sánh chữ số thứ hai, chữ số thứ ba, và cứ tiếp tục như vậy cho đến khi tìm được sự khác biệt.

      IV. Bài tập trắc nghiệm minh họa

      Dưới đây là một số bài tập trắc nghiệm minh họa để giúp các em ôn tập kiến thức về số thập phân:

      Câu 1: Số thập phân nào sau đây lớn nhất?

      • A. 2,5
      • B. 2,51
      • C. 2,49
      • D. 2,505

      Câu 2: Kết quả của phép tính 3,5 + 2,7 là:

      • A. 5,2
      • B. 6,2
      • C. 5,12
      • D. 6,12

      V. Ứng dụng của số thập phân trong thực tế

      Số thập phân được ứng dụng rộng rãi trong thực tế, ví dụ như:

      • Đo lường: Chiều dài, chiều rộng, khối lượng, thể tích,... thường được biểu diễn bằng số thập phân.
      • Tiền tệ: Giá cả hàng hóa, dịch vụ thường được biểu diễn bằng số thập phân.
      • Thống kê: Các số liệu thống kê thường được biểu diễn bằng số thập phân.

      VI. Lời khuyên khi học tập

      Để học tốt chương 6: Số thập phân, các em cần:

      • Nắm vững khái niệm cơ bản về số thập phân.
      • Luyện tập thường xuyên các phép toán với số thập phân.
      • Hiểu rõ cách so sánh số thập phân.
      • Áp dụng kiến thức vào giải các bài tập thực tế.

      Hy vọng bộ trắc nghiệm Bài tập ôn tập chương 6: Số thập phân Toán 6 Chân trời sáng tạo này sẽ giúp các em học sinh ôn tập và củng cố kiến thức một cách hiệu quả. Chúc các em học tốt!

      Tài liệu, đề thi và đáp án Toán 6