Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Giải bài 1 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Giải bài 1 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Chào mừng các em học sinh đến với lời giải chi tiết bài 1 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các bài giải chuẩn xác, dễ hiểu và phù hợp với chương trình học.

Chứng minh rằng các đẳng thức sau đúng với mọi (n in mathbb{N}*).

Đề bài

Chứng minh rằng các đẳng thức sau đúng với mọi \(n \in \mathbb{N}*\).

a) \({1^3} + {2^3} + {3^3} + ... + {n^3} = \frac{{{n^2}{{(n + 1)}^2}}}{4}\)

b) \(1.4 + 2.7 + 3.10 + ... + n(3n + 1) = n{(n + 1)^2}\)

c) \(\frac{1}{{1.3}} + \frac{1}{{3.5}} + \frac{1}{{5.7}} + ... + \frac{1}{{(2n - 1)(2n + 1)}} = \frac{n}{{2n + 1}}\)

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo 1

Quy nạp: Chứng minh mệnh đề đúng với \(n \ge p\) thì:

Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\)

Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1.\) Kết luận.

Lời giải chi tiết

a) Ta chứng minh bằng quy nạp theo n.

Bước 1: Với \(n = 1\) ta có \({1^3} = \frac{{{1^2}{{(1 + 1)}^2}}}{4}\)

Như vậy đẳng thức đúng cho trường hợp \(n = 1\)

Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có:

\({1^3} + {2^3} + {3^3} + ... + {k^3} = \frac{{{k^2}{{(k + 1)}^2}}}{4}\)

Ta sẽ chứng minh đẳng thức đúng với \(n = k + 1\), nghĩa là cần chứng minh

\({1^3} + {2^3} + {3^3} + ... + {k^3} + {(k + 1)^3} = \frac{{{{(k + 1)}^2}{{(k + 2)}^2}}}{4}\)

Sử dụng giả thiết quy nạp, ta có

\(\begin{array}{l}{1^3} + {2^3} + {3^3} + ... + {k^3} + {(k + 1)^3} = \frac{{{k^2}{{(k + 1)}^2}}}{4} + {(k + 1)^3}\\ = {(k + 1)^2}\left( {\frac{{{k^2}}}{4} + k + 1} \right) = \frac{{{{(k + 1)}^2}({k^2} + 4k + 4)}}{4}\\ = \frac{{{{(k + 1)}^2}{{(k + 2)}^2}}}{4}\end{array}\)

Vậy đẳng thức đúng với \(n = k + 1\).

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi \(n \in \mathbb{N}*\).

b) Ta chứng minh bằng quy nạp theo n.

Bước 1: Với \(n = 1\) ta có \(1.4 = 1.{(1 + 1)^2}\)

Như vậy đẳng thức đúng cho trường hợp \(n = 1\)

Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có:

\(1.4 + 2.7 + 3.10 + ... + k(3k + 1) = k{(k + 1)^2}\)

Ta sẽ chứng minh đẳng thức đúng với \(n = k + 1\), nghĩa là cần chứng minh

\(1.4 + 2.7 + 3.10 + ... + k(3k + 1) + (k + 1)(3(k + 1) + 1) = (k + 1){(k + 2)^2}\)

Sử dụng giả thiết quy nạp, ta có

\(\begin{array}{l}1.4 + 2.7 + 3.10 + ... + k(3k + 1) + (k + 1)(3(k + 1) + 1)\\ = k{(k + 1)^2} + (k + 1)(3k + 4) = (k + 1)\left[ {k(k + 1) + 3k + 4} \right]\\ = (k + 1)({k^2} + 4k + 4) = (k + 1){(k + 2)^2}\end{array}\)

Vậy đẳng thức đúng với \(n = k + 1\).

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi \(n \in \mathbb{N}*\).

c) Ta chứng minh bằng phương pháp quy nạp

Với \(n = 1\) ta có \({S_1} = \frac{1}{3}\)

Vậy đẳng thức đúng với \(n = 1\)

Giải sử đẳng thức đúng với \(n = k\) tức là ta có \({S_k} = \frac{k}{{2k + 1}}\)

Ta chứng minh đẳng thức đúng với \(n = k + 1\) tức là chứng minh \({S_{k + 1}} = \frac{{k + 1}}{{2(k + 1) + 1}}\)

Thật vậy, ta có

\(\begin{array}{l}{S_{k + 1}} = \frac{1}{{1.3}} + \frac{1}{{3.5}} + ... + \frac{1}{{(2k - 1)(2k + 1)}} + \frac{1}{{(2k + 1)(2k + 3)}}\\ = \frac{k}{{2k + 1}} + \frac{1}{{(2k + 1)(2k + 3)}} = \frac{{k(2k + 3) + 1}}{{(2k + 1)(2k + 3)}} = \frac{{2{k^2} + 3k + 1}}{{(2k + 1)(2k + 3)}}\\ = \frac{{(k + 1)(2k + 1)}}{{(2k + 1)(2k + 3)}} = \frac{{k + 1}}{{2k + 3}}\end{array}\)

Vậy đẳng thức đúng với mọi số tự nhiên \(n \ge 1\).

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 1 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo đặc sắc thuộc chuyên mục giải sgk toán 10 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 1 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo: Tổng quan

Bài 1 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp để giải quyết các bài toán cụ thể. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, các ký hiệu, và các quy tắc liên quan đến tập hợp.

Nội dung bài tập

Bài 1 thường bao gồm các dạng bài tập sau:

  • Xác định các phần tử của tập hợp: Yêu cầu học sinh liệt kê các phần tử thuộc một tập hợp cho trước, hoặc xác định một tập hợp dựa trên các điều kiện cho trước.
  • Thực hiện các phép toán trên tập hợp: Bao gồm các phép hợp, giao, hiệu, bù của các tập hợp. Học sinh cần nắm vững các công thức và quy tắc để thực hiện các phép toán này một cách chính xác.
  • Chứng minh các đẳng thức tập hợp: Yêu cầu học sinh chứng minh các đẳng thức liên quan đến các phép toán trên tập hợp, sử dụng các tính chất cơ bản của tập hợp.
  • Giải các bài toán ứng dụng: Áp dụng kiến thức về tập hợp để giải quyết các bài toán thực tế, ví dụ như bài toán về thống kê, bài toán về phân loại đối tượng.

Phương pháp giải bài tập

Để giải bài 1 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo một cách hiệu quả, học sinh cần:

  1. Nắm vững định nghĩa và các tính chất của tập hợp: Đây là nền tảng cơ bản để giải quyết mọi bài toán liên quan đến tập hợp.
  2. Hiểu rõ các phép toán trên tập hợp: Nắm vững công thức và quy tắc thực hiện các phép toán hợp, giao, hiệu, bù.
  3. Sử dụng sơ đồ Venn: Sơ đồ Venn là một công cụ hữu ích để minh họa các tập hợp và các phép toán trên tập hợp, giúp học sinh dễ dàng hình dung và giải quyết bài toán.
  4. Phân tích bài toán một cách cẩn thận: Xác định rõ các tập hợp, các điều kiện cho trước, và yêu cầu của bài toán.
  5. Áp dụng các kiến thức đã học một cách linh hoạt: Kết hợp các định nghĩa, tính chất, và phép toán trên tập hợp để giải quyết bài toán.

Ví dụ minh họa

Bài toán: Cho hai tập hợp A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Tìm A ∪ B và A ∩ B.

Giải:

A ∪ B = {1, 2, 3, 4, 5, 6} (tập hợp chứa tất cả các phần tử thuộc A hoặc B)

A ∩ B = {3, 4} (tập hợp chứa tất cả các phần tử thuộc cả A và B)

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về tập hợp, học sinh nên luyện tập thêm các bài tập tương tự trong sách giáo khoa, sách bài tập, và các nguồn tài liệu học tập khác. Ngoài ra, học sinh có thể tham khảo các bài giảng trực tuyến, các video hướng dẫn giải bài tập, và các diễn đàn học tập để trao đổi kinh nghiệm và học hỏi lẫn nhau.

Lời khuyên

Học Toán đòi hỏi sự kiên trì, chăm chỉ, và tư duy logic. Hãy dành thời gian ôn tập bài cũ, làm bài tập đầy đủ, và tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè khi gặp khó khăn. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

Bảng tóm tắt các phép toán trên tập hợp

Phép toánKý hiệuĐịnh nghĩa
HợpA ∪ BTập hợp chứa tất cả các phần tử thuộc A hoặc B
GiaoA ∩ BTập hợp chứa tất cả các phần tử thuộc cả A và B
HiệuA \ BTập hợp chứa tất cả các phần tử thuộc A nhưng không thuộc B
CATập hợp chứa tất cả các phần tử không thuộc A

Tài liệu, đề thi và đáp án Toán 10