Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 4 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách rõ ràng, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất cho học sinh, sinh viên. Hãy cùng giaitoan.edu.vn khám phá lời giải bài tập này ngay nhé!
Chứng minh rằng bất đẳng thức \(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} \le \frac{{n + 1}}{2}\) đúng với mọi \(n \in \mathbb{N}*\).
Đề bài
Chứng minh rằng bất đẳng thức \(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} \le \frac{{n + 1}}{2}\) đúng với mọi \(n \in \mathbb{N}*\).
Lời giải chi tiết
Ta chứng minh bằng quy nạp theo n.
Bước 1: Với \(n = 1\) ta có \(1 = \frac{{1 + 1}}{2}\)
Như vậy bất đẳng thức đúng cho trường hợp \(n = 1\)
Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có: \(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{k} \le \frac{{k + 1}}{2}\)
Ta sẽ chứng minh bất đẳng thức đúng với \(n = k + 1\), nghĩa là cần chứng minh \(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{k} + \frac{1}{{k + 1}} \le \frac{{k + 2}}{2}\)
Sử dụng giả thiết quy nạp, với lưu ý \(k \ge 1\) ta có
\(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{k} + \frac{1}{{k + 1}} \le \frac{{k + 1}}{2} + \frac{1}{{k + 1}} \le \frac{{k + 1}}{2} + \frac{1}{2} = \frac{{k + 2}}{2}\)
Vậy bất đẳng thức đúng với \(n = k + 1\).
Theo nguyên lí quy nạp toán học, bất đẳng thức đúng với mọi \(n \in \mathbb{N}*\).
Bài 4 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực. Việc giải bài tập này không chỉ giúp học sinh củng cố kiến thức lý thuyết mà còn rèn luyện kỹ năng giải quyết vấn đề, tư duy logic.
Bài 4 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 4 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài tập. Lưu ý rằng, trước khi bắt đầu giải bài tập, các em cần nắm vững các kiến thức lý thuyết liên quan.
Đề bài: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2.
Lời giải:
Để đạt được kết quả tốt nhất khi giải bài 4 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo, các em cần lưu ý những điều sau:
Ngoài sách giáo khoa, các em có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:
Bài 4 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo là một bài tập quan trọng, giúp học sinh củng cố kiến thức về vectơ và ứng dụng trong hình học. Hy vọng rằng, với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin hơn trong quá trình học tập và đạt được kết quả tốt nhất.