Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 4 trang 21 Chuyên đề học tập Toán 10 – Chân trời sáng tạo. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách dễ hiểu, cùng với những kiến thức nền tảng cần thiết để nắm vững nội dung bài học.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tự tin chinh phục môn Toán.
Ba tế bào A, B, C sau một số lần nguyên phân tạo ra 168 tế bào con. Biết số tế bào A tạo ra gấp bốn lần số tế bào B tạo ra và số lần nguyên phân của tế bào C nhiều hơn số lần nguyên phân của tế bào B là bốn lần. Tinh số lần nguyên phân của mỗi tế bào.
Đề bài
Ba tế bào A, B, C sau một số lần nguyên phân tạo ra 168 tế bào con. Biết số tế bào A tạo ra gấp bốn lần số tế bào B tạo ra và số lần nguyên phân của tế bào C nhiều hơn số lần nguyên phân của tế bào B là bốn lần. Tinh số lần nguyên phân của mỗi tế bào.
Phương pháp giải - Xem chi tiết
Bước 1: Lập hệ phương trình
+ Chọn ẩn và đặt điều kiện cho ẩn
+ Biểu diễn các đại lượng chưa biết theo ẩn và đại lượng đã biết
+ Lập các phương trình biểu thị mối quan hệ giữa các đại lượng
Bước 2: Giải hệ phương trình
Bước 3: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán và kết luận.
Lời giải chi tiết
Gọi số lần nguyên phân của tế bào loại A, B, C là x, y, z (lần) \((x,y,z \in \mathbb{N})\)
Tổng số tế bào con tạo ra là 168 tế bào nên \({2^x} + {2^y} + {2^z} = 168\)
Số tế bào A tạo ra gấp bốn lần số tế bào B hay \({2^x} = {4.2^y}\)
Số lần nguyên phân của tế bào C nhiều hơn số lần nguyên phân của tế bào B là bốn lần hay \(z = y + 4\)
\( \Rightarrow {2^z} = {2^{y + 4}} \Leftrightarrow {2^z} = {16.2^y}\)
Từ đó ta có hệ phương trình bậc nhất ba ẩn \({2^x},{2^y},{2^z}\) là:
\(\left\{ \begin{array}{l}{2^x} + {2^y} + {2^z} = 168\\{2^x} - {4.2^y} = 0\\{16.2^y} - {2^z} = 0\end{array} \right.\)
Sử dụng máy tính cầm tay, ta được \({2^x} = 32,{2^y} = 8,{2^z} = 128 \Rightarrow x = 5;y = 3;z = 7\)
Vậy tế bào loại A nguyên phân 5 lần, tế bào loại B nguyên phân 3 lần và tế bào loại C nguyên phân 7 lần.
Bài 4 trang 21 Chuyên đề học tập Toán 10 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của chúng.
Bài 4 trang 21 thường bao gồm các dạng bài tập sau:
Để giải bài 4 trang 21 Chuyên đề học tập Toán 10 – Chân trời sáng tạo một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:
Ví dụ 1: Cho hai vectơ a = (1; 2) và b = (-3; 4). Tìm vectơ c = a + b.
Giải:
c = a + b = (1; 2) + (-3; 4) = (1 - 3; 2 + 4) = (-2; 6).
Ví dụ 2: Cho vectơ a = (2; -1) và số thực k = 3. Tìm vectơ b = ka.
Giải:
b = ka = 3(2; -1) = (3 * 2; 3 * -1) = (6; -3).
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, bạn có thể luyện tập thêm với các bài tập tương tự trong sách giáo khoa và các tài liệu tham khảo khác. Hãy chú trọng việc hiểu rõ bản chất của bài toán và áp dụng các phương pháp giải một cách linh hoạt.
Bài 4 trang 21 Chuyên đề học tập Toán 10 – Chân trời sáng tạo là một bài tập quan trọng giúp bạn rèn luyện kỹ năng giải toán về vectơ. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tập tốt!