Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Giải bài 1 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Giải bài 1 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 1 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và phù hợp với chương trình học Toán 10 hiện hành. Hãy cùng theo dõi để nắm vững kiến thức và đạt kết quả tốt nhất!

Chứng minh các đẳng thức sau đúng với mọi \(n \in \mathbb{N}*\):

Đề bài

Chứng minh các đẳng thức sau đúng với mọi \(n \in \mathbb{N}*\):

a) \(1.2 + 2.3 + 3.4 + ... + n(n + 1) = \frac{{n(n + 1)(n + 2)}}{3}\)

b) \(1 + 4 + 9 + ... + {n^2} = \frac{{n(n + 1)(2n + 1)}}{6}\)

c) \(1 + 2 + {2^2} + {2^3} + {2^4} + ... + {2^{n - 1}} = {2^n} - 1\)

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo 1

Chứng minh mệnh đề đúng với \(n \ge p\) thì:

Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\)

Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1.\) Kết luận.

Lời giải chi tiết

a) Ta chứng minh a) bằng phương pháp quy nạp

Với \(n = 1\) ta có \(1.2 = \frac{{1.(1 + 1).(1 + 2)}}{3}\)

Vậy a) đúng với \(n = 1\)

Giải sử a) đúng với \(n = k\) nghĩa là có \(1.2 + 2.3 + 3.4 + ... + k(k + 1) = \frac{{k(k + 1)(k + 2)}}{3}\)

Ta chứng minh a) đúng với \(n = k + 1\) tức là chứng minh \(1.2 + 2.3 + 3.4 + ... + k(k + 1) + (k + 1)(k + 2) = \frac{{(k + 1)(k + 2)(k + 3)}}{3}\)

Thật vậy, ta có

\(\begin{array}{l}1.2 + 2.3 + 3.4 + ... + k(k + 1) + (k + 1)(k + 2)\\ = \frac{{k(k + 1)(k + 2)}}{3} + (k + 1)(k + 2)\\ = (k + 1)(k + 2)\left[ {\frac{k}{3} + 1} \right]\\ = \frac{{(k + 1)(k + 2)(k + 3)}}{3}\end{array}\)

Vậy a) đúng với mọi \(n \in \mathbb{N}*\).

b) Ta chứng minh b) bằng phương pháp quy nạp

Với \(n = 1\) ta có \(1 = \frac{{1.(1 + 1)(2.1 + 1)}}{6}\)

Vậy b) đúng với \(n = 1\)

Giải sử b) đúng với \(n = k\) nghĩa là có \(1 + 4 + 9 + ... + {k^2} = \frac{{k(k + 1)(2k + 1)}}{6}\)

Ta chứng minh b) đúng với \(n = k + 1\) tức là chứng minh \(1 + 4 + 9 + ... + {k^2} + {(k + 1)^2} = \frac{{(k + 1)(k + 2)\left[ {2(k + 1) + 1} \right]}}{6}\)

Thật vậy, ta có

\(\begin{array}{l}1 + 4 + 9 + ... + {k^2} + {(k + 1)^2} = \frac{{k(k + 1)(2k + 1)}}{6} + {(k + 1)^2}\\ = \frac{{(k + 1)}}{6}\left[ {k(2k + 1) + 6(k + 1)} \right] = \frac{{(k + 1)}}{6}.\left( {2{k^2} + k + 6k + 6} \right)\\ = \frac{{(k + 1)}}{6}.\left( {2{k^2} + 7k + 6} \right) = \frac{{(k + 1)}}{6}.(k + 2).(2k + 3)\\ = \frac{{(k + 1)(k + 2)\left[ {2(k + 1) + 1} \right]}}{6}\end{array}\)

Vậy b) đúng với mọi \(n \in \mathbb{N}*\).

c) Ta chứng minh c) bằng phương pháp quy nạp

Với \(n = 1\) ta có \(1 = {2^1} - 1\)

Vậy c) đúng với \(n = 1\)

Giải sử c) đúng với \(n = k\) nghĩa là có \(1 + 2 + {2^2} + {2^3} + {2^4} + ... + {2^{k - 1}} = {2^k} - 1\)

Ta chứng minh c) đúng với \(n = k + 1\) tức là chứng minh \(1 + 2 + {2^2} + {2^3} + {2^4} + ... + {2^{k - 1}} + {2^k} = {2^{k + 1}} - 1\)

Thật vậy, ta có

\(\begin{array}{l}1 + 2 + {2^2} + {2^3} + {2^4} + ... + {2^{k - 1}} + {2^k}\\ = {2^k} - 1 + {2^k} = {2.2^k} - 1 = {2^{k + 1}} - 1\end{array}\)

Vậy c) đúng với mọi \(n \in \mathbb{N}*\).

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 1 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập sgk toán 10 trên nền tảng toán học. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 1 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo: Tổng quan

Bài 1 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc ôn tập và củng cố kiến thức về các khái niệm cơ bản như tập hợp, số thực, và các phép toán trên số thực. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện tư duy logic và khả năng giải quyết vấn đề.

Nội dung chi tiết bài 1 trang 32

Bài 1 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các tập hợp số. Học sinh cần xác định các tập hợp số như tập hợp số tự nhiên, số nguyên, số hữu tỉ, số vô tỉ, số thực dựa trên các điều kiện cho trước.
  • Dạng 2: Thực hiện các phép toán trên số thực. Học sinh cần thực hiện các phép cộng, trừ, nhân, chia, lũy thừa, khai phương trên số thực, tuân thủ các quy tắc ưu tiên của các phép toán.
  • Dạng 3: Giải các phương trình và bất phương trình đơn giản. Học sinh cần giải các phương trình và bất phương trình bậc nhất, bậc hai, và các phương trình chứa dấu căn thức.
  • Dạng 4: Ứng dụng kiến thức vào giải quyết bài toán thực tế. Học sinh cần vận dụng các kiến thức đã học để giải quyết các bài toán liên quan đến các tình huống thực tế, như tính toán diện tích, chu vi, thể tích, hoặc giải các bài toán về lãi suất, tỷ lệ.

Lời giải chi tiết bài 1 trang 32

Để giúp học sinh hiểu rõ hơn về cách giải bài 1 trang 32, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:

Câu a: ... (Giải thích chi tiết câu a)

...

Câu b: ... (Giải thích chi tiết câu b)

...

Câu c: ... (Giải thích chi tiết câu c)

...

Mẹo giải bài tập Toán 10 hiệu quả

Để giải bài tập Toán 10 hiệu quả, học sinh cần:

  1. Nắm vững kiến thức cơ bản. Hiểu rõ các định nghĩa, định lý, và công thức trong chương trình học.
  2. Luyện tập thường xuyên. Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và tư duy.
  3. Sử dụng các công cụ hỗ trợ. Sử dụng máy tính bỏ túi, phần mềm giải toán, hoặc các trang web học toán online để kiểm tra kết quả và tìm kiếm lời giải.
  4. Hỏi thầy cô hoặc bạn bè. Nếu gặp khó khăn, đừng ngần ngại hỏi thầy cô hoặc bạn bè để được giúp đỡ.

Tài liệu tham khảo hữu ích

Học sinh có thể tham khảo các tài liệu sau để học Toán 10 hiệu quả:

  • Sách giáo khoa Toán 10 – Chân trời sáng tạo
  • Sách bài tập Toán 10 – Chân trời sáng tạo
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng Toán 10 trên YouTube

Kết luận

Bài 1 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, các bạn học sinh sẽ tự tin hơn khi đối mặt với bài tập này và đạt kết quả tốt nhất trong môn Toán.

Tài liệu, đề thi và đáp án Toán 10