Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 1 trang 64 Chuyên đề học tập Toán 10 – Chân trời sáng tạo. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách rõ ràng, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất cho học sinh, sinh viên. Hãy cùng giaitoan.edu.vn khám phá lời giải bài tập này ngay nhé!
Xác định tâm sai, tọa độ tiêu điểm và phương trình đường chuẩn tương ứng của mỗi đường conic sau:
Đề bài
Xác định tâm sai, tọa độ tiêu điểm và phương trình đường chuẩn tương ứng của mỗi đường conic sau:
a) \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{7} = 1\)
b) \(\frac{{{x^2}}}{{15}} - \frac{{{y^2}}}{{10}} = 1\)
c) \({y^2} = x\)
Phương pháp giải - Xem chi tiết
a) Elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), \(c = \sqrt {{a^2} - {b^2}} \)
+ Tâm sai của elip: \(e = \frac{c}{a}\)
+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0)\)
+ Đường chuẩn: \({\Delta _1}:x = - \frac{a}{e}\) và \({\Delta _2}:x = \frac{a}{e}\).
b) Hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), \(c = \sqrt {{a^2} + {b^2}} \)
+ Tâm sai của hypebol: \(e = \frac{c}{a}\)
+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0)\)
+ Đường chuẩn: \({\Delta _1}:x = - \frac{a}{e}\) và \({\Delta _2}:x = \frac{a}{e}\).
c) Parabol (P) \({y^2} = 2px\)
+ Tâm sai \(e = 1\)
+ Tiêu điểm \(F(\frac{p}{2};0)\)
+ Đường chuẩn: \(\Delta :x = - \frac{p}{2}\)
Lời giải chi tiết
a) Elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{7} = 1\), suy ra \(c = \sqrt {{a^2} - {b^2}} = \sqrt 2 \)
+ Tâm sai của elip: \(e = \frac{c}{a} = \frac{{\sqrt 2 }}{3}\)
+ Tiêu điểm \({F_1}( - \sqrt 2 ;0),{F_2}(\sqrt 2 ;0)\)
+ Đường chuẩn: \({\Delta _1}:x = - \frac{{9\sqrt 2 }}{2}\) và \({\Delta _2}:x = \frac{{9\sqrt 2 }}{2}\).
b) Hypebol (H): \(\frac{{{x^2}}}{{15}} - \frac{{{y^2}}}{{10}} = 1\), \(c = \sqrt {{a^2} + {b^2}} = 5\)
+ Tâm sai của hypebol: \(e = \frac{c}{a} = 3\)
+ Tiêu điểm \({F_1}( - 5;0),{F_2}(5;0)\)
+ Đường chuẩn: \({\Delta _1}:x = - \frac{{\sqrt {15} }}{3}\) và \({\Delta _2}:x = \frac{{\sqrt {15} }}{3}\).
c) Parabol (P): \({y^2} = x\), suy ra \(p = \frac{1}{2}\)
+ Tâm sai \(e = 1\)
+ Tiêu điểm \(F(\frac{1}{4};0)\)
+ Đường chuẩn: \(\Delta :x = - \frac{1}{4}\)
Bài 1 trang 64 Chuyên đề học tập Toán 10 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của chúng.
Bài 1 trang 64 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 1 trang 64 Chuyên đề học tập Toán 10 – Chân trời sáng tạo, chúng tôi xin trình bày lời giải chi tiết như sau:
Cho hai vectơ a và b. Tìm vectơ c = a + b.
Giải:
Để tìm vectơ c, ta thực hiện phép cộng vectơ theo quy tắc hình bình hành hoặc quy tắc tam giác. (Giải thích chi tiết quy tắc và vẽ hình minh họa). Kết quả là vectơ c có tọa độ (xc, yc) được tính bằng tổng tọa độ của a và b: xc = xa + xb, yc = ya + yb.
Cho vectơ a và số thực k. Tìm vectơ d = ka.
Giải:
Để tìm vectơ d, ta nhân vectơ a với số thực k. (Giải thích chi tiết quy tắc và vẽ hình minh họa). Kết quả là vectơ d có tọa độ (xd, yd) được tính bằng tích của k với tọa độ của a: xd = kxa, yd = kya.
Để giải tốt các bài tập về vectơ, các em cần lưu ý những điều sau:
Ngoài sách giáo khoa, các em có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 10:
Hy vọng rằng với lời giải chi tiết và những lời khuyên trên, các em học sinh sẽ tự tin hơn trong việc giải bài 1 trang 64 Chuyên đề học tập Toán 10 – Chân trời sáng tạo. Chúc các em học tập tốt!