Giaitoan.edu.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho các bài tập trong mục 3 trang 11, 12 của Chuyên đề học tập Toán 10 - Chân trời sáng tạo. Chúng tôi hiểu rằng việc tự học đôi khi gặp nhiều khó khăn, đặc biệt là với những bài toán phức tạp.
Với đội ngũ giáo viên giàu kinh nghiệm, chúng tôi cam kết cung cấp những lời giải chính xác, đầy đủ và dễ tiếp thu, giúp các em học sinh nắm vững kiến thức và tự tin giải quyết các bài toán tương tự.
Sử dụng máy tính cầm tay, tìm nghiệm của các hệ phương trình sau:
Sử dụng máy tính cầm tay, tìm nghiệm của các hệ phương trình sau:
a) \(\left\{ \begin{array}{l}2x + y - z = - 1\\x + 3y + 2z = 2\\3x + 3y - 3z = - 5\end{array} \right.\)
b) \(\left\{ \begin{array}{l}2x - 3y + 2z = 5\\x + 2y - 3z = 4\\3x - y - z = 2\end{array} \right.\)
c) \(\left\{ \begin{array}{l}x - y - z = - 1\\2x - y + z = - 1\\ - 4x + 3y + z = 3\end{array} \right.\)
Phương pháp giải:
Dùng máy tính cầm tay để tìm nghiệm của hệ
\(\left\{ \begin{array}{l}ax + by + cz = d\\a'x + b'y + c'z = d'\\a''x + b''y + c''z = d''\end{array} \right.\)
+) Mở máy, ấn liên tiếp các phím:
MODE 5 2 a = b = c = d = a’ = b’ = c’ = d’ = a’’ = b’’ = c’’ = d’’=
+) Màn hình hiển thị:
X = >> Ấn tiếp phím = để lấy gía trị của Y và Z. >> Kết luận nghiệm.
No-Solution >> KL: hệ vô nghiệm
Infinite Sol >> KL: hệ có vô số nghiệm
Lời giải chi tiết:
a) \(\left\{ \begin{array}{l}2x + y - z = - 1\\x + 3y + 2z = 2\\3x + 3y - 3z = - 5\end{array} \right.\)
Hệ phương trình có nghiệm duy nhất \(\left( {\frac{2}{3};\frac{{ - 2}}{3};\frac{5}{3}} \right)\)
b) \(\left\{ \begin{array}{l}2x - 3y + 2z = 5\\x + 2y - 3z = 4\\3x - y - z = 2\end{array} \right.\)
Hệ phương trình vô nghiệm
c) \(\left\{ \begin{array}{l}x - y - z = - 1\\2x - y + z = - 1\\ - 4x + 3y + z = 3\end{array} \right.\)
Hệ có vô số nghiệm
Ba bạn Nhân, Nghĩa và Phúc đi vào căng tin của trường. Nhân mua một li trà sữa, mỗi li nước trái cây, hai cái bánh ngọt và trả 90 000 đồng. Nghĩa mua một li trà sữa, ba cái bánh ngoạt và trả 50 000 đồng. Phúc mua một li trà sữa, hai li nước trái cây, ba cái bánh ngọt và trả 140 000 đồng. Gọi x, y, z lần lượt là giá tiền của một li trà sữa, một li nước trái cây và một cái bánh ngoạt căng tin đó.
a) Lập các hệ thức thể hiện mối liên hệ giữa x, y và z.
b) Tìm giá tiền của một li trà sữa, một li nước trái cây và một cái bánh ngọt tại căng tin đó
Lời giải chi tiết:
a)
Nhân mua một li trà sữa, một li nước trái cây, hai cái bánh ngọt và trả 90 000 đồng, nên
\(x + y + 2z = 90000\)
Nghĩa mua một li trà sữa, ba cái bánh ngoạt và trả 50 000 đồng, nên:
\(x + 3z = 50000\)
Phúc mua một li trà sữa, hai li nước trái cây, ba cái bánh ngọt và trả 140 000 đồng, nên
\(x + 2y + 3z = 140000\)
b) Từ các hệ thức liên hệ giữa x, y và z ta có hệ phương trình bậc nhất ba ẩn:
\(\left\{ \begin{array}{l}x + y + 2z = 90000\\x + 3z = 50000\\x + 2y + 3z = 140000\end{array} \right.\)
Sử dụng máy tính cầm tay, ta được:
Nghiệm của hệ phương trình trên là: \((x;y;z) = (35000;45000;5000)\)
Vậy một li trà sữa giá 35 000 đồng, một li nước trái cây giá 45 000 đồng và một cái bánh ngọt giá 5 000 đồng.
Sử dụng máy tính cầm tay, tìm nghiệm của các hệ phương trình sau:
a) \(\left\{ \begin{array}{l}2x + y - z = - 1\\x + 3y + 2z = 2\\3x + 3y - 3z = - 5\end{array} \right.\)
b) \(\left\{ \begin{array}{l}2x - 3y + 2z = 5\\x + 2y - 3z = 4\\3x - y - z = 2\end{array} \right.\)
c) \(\left\{ \begin{array}{l}x - y - z = - 1\\2x - y + z = - 1\\ - 4x + 3y + z = 3\end{array} \right.\)
Phương pháp giải:
Dùng máy tính cầm tay để tìm nghiệm của hệ
\(\left\{ \begin{array}{l}ax + by + cz = d\\a'x + b'y + c'z = d'\\a''x + b''y + c''z = d''\end{array} \right.\)
+) Mở máy, ấn liên tiếp các phím:
MODE 5 2 a = b = c = d = a’ = b’ = c’ = d’ = a’’ = b’’ = c’’ = d’’=
+) Màn hình hiển thị:
X = >> Ấn tiếp phím = để lấy gía trị của Y và Z. >> Kết luận nghiệm.
No-Solution >> KL: hệ vô nghiệm
Infinite Sol >> KL: hệ có vô số nghiệm
Lời giải chi tiết:
a) \(\left\{ \begin{array}{l}2x + y - z = - 1\\x + 3y + 2z = 2\\3x + 3y - 3z = - 5\end{array} \right.\)
Hệ phương trình có nghiệm duy nhất \(\left( {\frac{2}{3};\frac{{ - 2}}{3};\frac{5}{3}} \right)\)
b) \(\left\{ \begin{array}{l}2x - 3y + 2z = 5\\x + 2y - 3z = 4\\3x - y - z = 2\end{array} \right.\)
Hệ phương trình vô nghiệm
c) \(\left\{ \begin{array}{l}x - y - z = - 1\\2x - y + z = - 1\\ - 4x + 3y + z = 3\end{array} \right.\)
Hệ có vô số nghiệm
Ba bạn Nhân, Nghĩa và Phúc đi vào căng tin của trường. Nhân mua một li trà sữa, mỗi li nước trái cây, hai cái bánh ngọt và trả 90 000 đồng. Nghĩa mua một li trà sữa, ba cái bánh ngoạt và trả 50 000 đồng. Phúc mua một li trà sữa, hai li nước trái cây, ba cái bánh ngọt và trả 140 000 đồng. Gọi x, y, z lần lượt là giá tiền của một li trà sữa, một li nước trái cây và một cái bánh ngoạt căng tin đó.
a) Lập các hệ thức thể hiện mối liên hệ giữa x, y và z.
b) Tìm giá tiền của một li trà sữa, một li nước trái cây và một cái bánh ngọt tại căng tin đó
Lời giải chi tiết:
a)
Nhân mua một li trà sữa, một li nước trái cây, hai cái bánh ngọt và trả 90 000 đồng, nên
\(x + y + 2z = 90000\)
Nghĩa mua một li trà sữa, ba cái bánh ngoạt và trả 50 000 đồng, nên:
\(x + 3z = 50000\)
Phúc mua một li trà sữa, hai li nước trái cây, ba cái bánh ngọt và trả 140 000 đồng, nên
\(x + 2y + 3z = 140000\)
b) Từ các hệ thức liên hệ giữa x, y và z ta có hệ phương trình bậc nhất ba ẩn:
\(\left\{ \begin{array}{l}x + y + 2z = 90000\\x + 3z = 50000\\x + 2y + 3z = 140000\end{array} \right.\)
Sử dụng máy tính cầm tay, ta được:
Nghiệm của hệ phương trình trên là: \((x;y;z) = (35000;45000;5000)\)
Vậy một li trà sữa giá 35 000 đồng, một li nước trái cây giá 45 000 đồng và một cái bánh ngọt giá 5 000 đồng.
Mục 3 của Chuyên đề học tập Toán 10 - Chân trời sáng tạo thường tập trung vào một chủ đề cụ thể, đòi hỏi học sinh phải nắm vững lý thuyết và áp dụng linh hoạt các công thức, định lý đã học. Việc giải các bài tập trong mục này không chỉ giúp củng cố kiến thức mà còn rèn luyện kỹ năng tư duy logic và giải quyết vấn đề.
Để hiểu rõ hơn về Mục 3, chúng ta cần xác định chính xác nội dung mà nó bao gồm. Thông thường, đây có thể là các bài tập về:
Để giải quyết các bài tập trong Mục 3 một cách hiệu quả, học sinh cần:
Dưới đây là giải chi tiết một số bài tập tiêu biểu trong Mục 3 trang 11, 12 Chuyên đề học tập Toán 10 - Chân trời sáng tạo. (Lưu ý: Do không có thông tin cụ thể về nội dung bài tập, chúng ta sẽ đưa ra các ví dụ minh họa).
Cho hai vectơ a = (1; 2) và b = (-3; 4). Tính tích vô hướng của hai vectơ này.
Lời giải:
Tích vô hướng của hai vectơ a và b được tính theo công thức:
a.b = xa.xb + ya.yb
Trong đó, a = (xa; ya) và b = (xb; yb)
Áp dụng công thức, ta có:
a.b = 1.(-3) + 2.4 = -3 + 8 = 5
Vậy, tích vô hướng của hai vectơ a và b là 5.
Tìm tập xác định và tập giá trị của hàm số y = x2 - 4x + 3.
Lời giải:
Hàm số y = x2 - 4x + 3 là một hàm số bậc hai. Tập xác định của hàm số bậc hai là tập số thực R.
Để tìm tập giá trị, ta viết lại hàm số dưới dạng:
y = (x - 2)2 - 1
Vì (x - 2)2 ≥ 0 với mọi x, nên y ≥ -1.
Vậy, tập giá trị của hàm số là [-1; +∞).
Việc học Toán 10 đòi hỏi sự kiên trì và nỗ lực. Hãy dành thời gian ôn tập lý thuyết, làm bài tập thường xuyên và tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè khi gặp khó khăn. Đừng ngần ngại đặt câu hỏi và thảo luận để hiểu rõ hơn về các khái niệm và phương pháp giải bài tập.
Giaitoan.edu.vn hy vọng rằng những lời giải chi tiết và phương pháp giải bài tập hiệu quả này sẽ giúp các em học sinh học tập tốt hơn môn Toán 10.