Giaitoan.edu.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho các bài tập trong mục 4 trang 46, 47 của Chuyên đề học tập Toán 10 - Chân trời sáng tạo. Chúng tôi hiểu rằng việc tự học đôi khi gặp nhiều khó khăn, đặc biệt là với những bài toán phức tạp.
Với đội ngũ giáo viên giàu kinh nghiệm, chúng tôi đã biên soạn lời giải đầy đủ, kèm theo các bước giải thích rõ ràng, giúp học sinh nắm vững kiến thức và phương pháp giải bài tập.
Cho điểm \(M(x;y)\) trên elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)và hai đường thẳng \({\Delta _1}:x + \frac{a}{e} = 0\) và \({\Delta _2}:x - \frac{a}{e} = 0\) (Hình 10). Gọi \(d(M,{\Delta _1});d(M,{\Delta _2})\) lần lượt là khoảng cách từ M đến \({\Delta _1},{\Delta _2}.\) Ta có \(d(M,{\Delta _1}) = \left| {x + \frac{a}{e}} \right| = \frac{{\left| {a + ex} \right|}}{e} = \frac{{a + ex}}{e}\) (vì \(e > 0\) và \(a + ex = M{F_1} > 0\)).
Tìm tọa độ hai tiêu điểm và viết phương trình hai đường chuẩn tương ứng của các elip sau:
a) \(({E_1}):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\)
b) \(({E_2}):\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\)
Phương pháp giải:
Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).
+ Ứng với tiêu điểm \({F_1}( - c;0)\), có đường chuẩn \({\Delta _1}:x + \frac{a}{e} = 0\)
+ Ứng với tiêu điểm \({F_2}(c;0)\), có đường chuẩn \({\Delta _2}:x - \frac{a}{e} = 0\)
Lời giải chi tiết:
a) Elip \(({E_1})\) có \(a = 2,b = 1\), suy ra \(c = \sqrt {{a^2} - {b^2}} = \sqrt 3 ,e = \frac{c}{a} = \frac{{\sqrt 3 }}{2}.\)
+ Ứng với tiêu điểm \({F_1}( - \sqrt 3 ;0)\), có đường chuẩn \({\Delta _1}:x + \frac{{4\sqrt 3 }}{3} = 0\)
+ Ứng với tiêu điểm \({F_2}\left( {\sqrt 3 ;0} \right)\), có đường chuẩn \({\Delta _2}:x - \frac{{4\sqrt 3 }}{3} = 0\)
b) Elip \(({E_2})\) có \(a = 10,b = 6\), suy ra \(c = \sqrt {{a^2} - {b^2}} = 8,e = \frac{c}{a} = \frac{4}{5}.\)
+ Ứng với tiêu điểm \({F_1}( - 8;0)\), có đường chuẩn \({\Delta _1}:x + \frac{{25}}{2} = 0\)
+ Ứng với tiêu điểm \({F_2}\left( {8;0} \right)\), có đường chuẩn \({\Delta _2}:x - \frac{{25}}{2} = 0\)
Cho điểm \(M(x;y)\) trên elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)và hai đường thẳng \({\Delta _1}:x + \frac{a}{e} = 0\) và \({\Delta _2}:x - \frac{a}{e} = 0\) (Hình 10). Gọi \(d(M,{\Delta _1});d(M,{\Delta _2})\) lần lượt là khoảng cách từ M đến \({\Delta _1},{\Delta _2}.\) Ta có \(d(M,{\Delta _1}) = \left| {x + \frac{a}{e}} \right| = \frac{{\left| {a + ex} \right|}}{e} = \frac{{a + ex}}{e}\) (vì \(e > 0\) và \(a + ex = M{F_1} > 0\)).
Suy ra \(\frac{{M{F_1}}}{{d(M,{\Delta _1})}} = \frac{{a + ex}}{{\frac{{a + ex}}{e}}} = e\)
Dựa theo cách tính trên, hãy tính \(\frac{{M{F_2}}}{{d(M,{\Delta _2})}}\)
Lời giải chi tiết:
Ta có: \(d(M,{\Delta _2}) = \left| {x - \frac{a}{e}} \right| = \frac{{\left| {a - ex} \right|}}{e} = \frac{{a - ex}}{e}\) (vì \(e > 0\) và \(a - ex = M{F_2} > 0\)).
Suy ra \(\frac{{M{F_2}}}{{d(M,{\Delta _2})}} = \frac{{a - ex}}{{\frac{{a - ex}}{e}}} = e\)
Lập phương trình chính tắc của elip có tiêu cự bằng 6 và khoảng cách giữa hai đường chuẩn là \(\frac{{50}}{3}\).
Phương pháp giải:
Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).
+ Tiêu cự: \(2c = 2\sqrt {{a^2} - {b^2}} \)
+ Khoảng cách giữa hai đường chuẩn là: \(\frac{{2a}}{e}\)
Lời giải chi tiết:
< b < a)\)
+ Tiêu cự: \(2c = 6 \Leftrightarrow c = 3\)
+ Khoảng cách giữa hai đường chuẩn là: \(\frac{{2a}}{e} = 2.\frac{{{a^2}}}{c} = \frac{{50}}{3} \Rightarrow {a^2} = 100\)
Hay \(a = 10\), suy ra \({b^2} = {a^2} - {c^2} = 91\)
Vậy elip cần tìm là \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{91}} = 1\)
Cho điểm \(M(x;y)\) trên elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)và hai đường thẳng \({\Delta _1}:x + \frac{a}{e} = 0\) và \({\Delta _2}:x - \frac{a}{e} = 0\) (Hình 10). Gọi \(d(M,{\Delta _1});d(M,{\Delta _2})\) lần lượt là khoảng cách từ M đến \({\Delta _1},{\Delta _2}.\) Ta có \(d(M,{\Delta _1}) = \left| {x + \frac{a}{e}} \right| = \frac{{\left| {a + ex} \right|}}{e} = \frac{{a + ex}}{e}\) (vì \(e > 0\) và \(a + ex = M{F_1} > 0\)).
Suy ra \(\frac{{M{F_1}}}{{d(M,{\Delta _1})}} = \frac{{a + ex}}{{\frac{{a + ex}}{e}}} = e\)
Dựa theo cách tính trên, hãy tính \(\frac{{M{F_2}}}{{d(M,{\Delta _2})}}\)
Lời giải chi tiết:
Ta có: \(d(M,{\Delta _2}) = \left| {x - \frac{a}{e}} \right| = \frac{{\left| {a - ex} \right|}}{e} = \frac{{a - ex}}{e}\) (vì \(e > 0\) và \(a - ex = M{F_2} > 0\)).
Suy ra \(\frac{{M{F_2}}}{{d(M,{\Delta _2})}} = \frac{{a - ex}}{{\frac{{a - ex}}{e}}} = e\)
Tìm tọa độ hai tiêu điểm và viết phương trình hai đường chuẩn tương ứng của các elip sau:
a) \(({E_1}):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\)
b) \(({E_2}):\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\)
Phương pháp giải:
Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).
+ Ứng với tiêu điểm \({F_1}( - c;0)\), có đường chuẩn \({\Delta _1}:x + \frac{a}{e} = 0\)
+ Ứng với tiêu điểm \({F_2}(c;0)\), có đường chuẩn \({\Delta _2}:x - \frac{a}{e} = 0\)
Lời giải chi tiết:
a) Elip \(({E_1})\) có \(a = 2,b = 1\), suy ra \(c = \sqrt {{a^2} - {b^2}} = \sqrt 3 ,e = \frac{c}{a} = \frac{{\sqrt 3 }}{2}.\)
+ Ứng với tiêu điểm \({F_1}( - \sqrt 3 ;0)\), có đường chuẩn \({\Delta _1}:x + \frac{{4\sqrt 3 }}{3} = 0\)
+ Ứng với tiêu điểm \({F_2}\left( {\sqrt 3 ;0} \right)\), có đường chuẩn \({\Delta _2}:x - \frac{{4\sqrt 3 }}{3} = 0\)
b) Elip \(({E_2})\) có \(a = 10,b = 6\), suy ra \(c = \sqrt {{a^2} - {b^2}} = 8,e = \frac{c}{a} = \frac{4}{5}.\)
+ Ứng với tiêu điểm \({F_1}( - 8;0)\), có đường chuẩn \({\Delta _1}:x + \frac{{25}}{2} = 0\)
+ Ứng với tiêu điểm \({F_2}\left( {8;0} \right)\), có đường chuẩn \({\Delta _2}:x - \frac{{25}}{2} = 0\)
Lập phương trình chính tắc của elip có tiêu cự bằng 6 và khoảng cách giữa hai đường chuẩn là \(\frac{{50}}{3}\).
Phương pháp giải:
Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).
+ Tiêu cự: \(2c = 2\sqrt {{a^2} - {b^2}} \)
+ Khoảng cách giữa hai đường chuẩn là: \(\frac{{2a}}{e}\)
Lời giải chi tiết:
< b < a)\)
+ Tiêu cự: \(2c = 6 \Leftrightarrow c = 3\)
+ Khoảng cách giữa hai đường chuẩn là: \(\frac{{2a}}{e} = 2.\frac{{{a^2}}}{c} = \frac{{50}}{3} \Rightarrow {a^2} = 100\)
Hay \(a = 10\), suy ra \({b^2} = {a^2} - {c^2} = 91\)
Vậy elip cần tìm là \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{91}} = 1\)
Mục 4 của Chuyên đề học tập Toán 10 - Chân trời sáng tạo thường tập trung vào một chủ đề cụ thể trong chương trình. Việc nắm vững kiến thức nền tảng và phương pháp giải bài tập là yếu tố then chốt để đạt kết quả tốt. Bài viết này sẽ cung cấp lời giải chi tiết cho từng bài tập trong mục 4 trang 46, 47, đồng thời phân tích các phương pháp giải hiệu quả.
Trước khi đi vào giải bài tập, chúng ta cần xác định rõ nội dung chính của Mục 4. Thông thường, mục này sẽ bao gồm các kiến thức về:
Để giải quyết các bài tập trong Mục 4 một cách hiệu quả, bạn cần áp dụng các phương pháp sau:
Dưới đây là lời giải chi tiết cho từng bài tập trang 46:
Bài tập | Lời giải |
---|---|
Bài 1 | (Lời giải chi tiết cho bài 1) |
Bài 2 | (Lời giải chi tiết cho bài 2) |
Bài 3 | (Lời giải chi tiết cho bài 3) |
Tiếp theo, chúng ta sẽ giải chi tiết các bài tập trang 47:
Bài tập | Lời giải |
---|---|
Bài 4 | (Lời giải chi tiết cho bài 4) |
Bài 5 | (Lời giải chi tiết cho bài 5) |
Bài 6 | (Lời giải chi tiết cho bài 6) |
Trong quá trình giải bài tập, bạn cần lưu ý những điều sau:
Kiến thức trong Mục 4 có ứng dụng rộng rãi trong nhiều lĩnh vực khác nhau của Toán học và thực tế. Ví dụ, nó có thể được sử dụng để giải quyết các bài toán về hình học, đại số, vật lý và kinh tế.
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và phương pháp giải bài tập hiệu quả cho Mục 4 trang 46, 47 Chuyên đề học tập Toán 10 - Chân trời sáng tạo. Chúc bạn học tập tốt!