Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 24 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Giải bài 3 trang 24 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Giải bài 3 trang 24 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 3 trang 24 Chuyên đề học tập Toán 10 – Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các em. Hãy cùng theo dõi bài giải dưới đây để hiểu rõ hơn về nội dung bài học nhé!

Tìm phương trình của parabol (P): \(y = a{x^2} + bx + c\;(a \ne 0)\) biết:

Đề bài

Tìm phương trình của parabol (P): \(y = a{x^2} + bx + c\;(a \ne 0)\) biết:

a) Parabol (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x=-2; x=1 và đi qua điểm M(-1;3);

b) Parabol (P) cắt trục tung tại điểm có tung độ y=-2 và hàm số đạt giá trị nhỏ nhất bằng -4 tại x=2.

Lời giải chi tiết

a) Parabol (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x=-2; x=1 hay (P) đi qua A(-2;0) và B(1;0)

\(A( - 2;0) \in (P)\) nên ta có: \(0 = a{.2^2} - b.2 + c\) hay \(4a + 2b + c = 0\)

\(B(1;0) \in (P)\) nên ta có: \(0 = a{.1^2} + b.1 + c\) hay \(a + b + c = 0\)

\(M( - 1;3) \in (P)\) nên ta có: \(3 = a.{( - 1)^2} + b.( - 1) + c\) hay \(a - b + c = 3\)

Ta có hệ phương trình:

\(\left\{ \begin{array}{l}a - b + c = 3\\4a - 2b + c = 0\\a + b + c = 0\end{array} \right.\)

Dùng máy tính cầm tay giải HPT, ta được \(a = - \frac{3}{2},{\rm{ }}b = - \frac{3}{2},{\rm{ }}c = 3.\)

Vậy parabol cần tìm là: \(y = - \frac{3}{2}{x^2} - \frac{3}{2}x + 3\)

b)

Parabol (P) cắt trục tung tại điểm có tung độ y=-2 hay (P) đi qua điểm N(0;-2)

\(N(0; - 2) \in (P)\) nên ta có: \( - 2 = c\)

Hàm số đạt giá trị nhỏ nhất bằng -4 tại x=2 hay (P) đi qua điểm Q(2;-4) và \(\frac{{ - b}}{{2a}} = 2\)

\(Q(2; - 4) \in (P)\) nên ta có: \(4a + 2b - 2 = - 4\)

\( \Rightarrow \left\{ \begin{array}{l}4a + 2b = - 2\\b = - 4a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = - 2\end{array} \right.\)

Vậy parabol cần tìm là: \(y = \frac{1}{2}{x^2} - 2x - 2\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 3 trang 24 Chuyên đề học tập Toán 10 – Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán 10 trên nền tảng tài liệu toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 3 trang 24 Chuyên đề học tập Toán 10 – Chân trời sáng tạo: Tổng quan

Bài 3 trang 24 Chuyên đề học tập Toán 10 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ và ứng dụng của vectơ trong hình học. Bài tập này yêu cầu học sinh phải hiểu rõ định nghĩa vectơ, các phép toán cộng, trừ, nhân với một số thực, và đặc biệt là khả năng phân tích bài toán, xây dựng hình vẽ và áp dụng các công thức để tìm ra lời giải chính xác.

Nội dung chi tiết bài 3 trang 24

Bài 3 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định vectơ: Yêu cầu học sinh xác định vectơ dựa trên các điểm cho trước hoặc các phép toán vectơ.
  • Dạng 2: Thực hiện các phép toán vectơ: Cộng, trừ, nhân vectơ với một số thực.
  • Dạng 3: Chứng minh đẳng thức vectơ: Sử dụng các quy tắc phép toán vectơ để chứng minh đẳng thức.
  • Dạng 4: Ứng dụng vectơ trong hình học: Tính độ dài vectơ, tìm tọa độ điểm, chứng minh các tính chất hình học.

Lời giải chi tiết bài 3 trang 24

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 3 trang 24, chúng ta sẽ đi vào phân tích từng phần của bài tập. Giả sử bài tập yêu cầu:

Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2

Lời giải:

  1. Phân tích bài toán: Bài toán yêu cầu chứng minh một đẳng thức vectơ liên quan đến trung điểm của một cạnh trong tam giác.
  2. Xây dựng hình vẽ: Vẽ tam giác ABC và trung điểm M của BC.
  3. Áp dụng kiến thức: Sử dụng quy tắc trung điểm của đoạn thẳng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2
  4. Kết luận: Vậy, overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2 (đpcm).

Các lưu ý khi giải bài tập về vectơ

Để giải tốt các bài tập về vectơ, các em cần lưu ý những điều sau:

  • Nắm vững định nghĩa vectơ, các phép toán vectơ và các quy tắc liên quan.
  • Thường xuyên luyện tập để làm quen với các dạng bài tập khác nhau.
  • Sử dụng hình vẽ để hỗ trợ việc phân tích bài toán và tìm ra lời giải.
  • Kiểm tra lại kết quả sau khi giải để đảm bảo tính chính xác.

Mở rộng kiến thức

Ngoài bài 3 trang 24, các em có thể tìm hiểu thêm về các ứng dụng của vectơ trong các lĩnh vực khác như vật lý, kỹ thuật, và khoa học máy tính. Việc hiểu rõ về vectơ sẽ giúp các em có một nền tảng vững chắc để học tập các môn học khác.

Tài liệu tham khảo

Các em có thể tham khảo thêm các tài liệu sau để hiểu rõ hơn về vectơ:

  • Sách giáo khoa Toán 10 – Chân trời sáng tạo
  • Sách bài tập Toán 10 – Chân trời sáng tạo
  • Các trang web học toán online uy tín

Kết luận

Bài 3 trang 24 Chuyên đề học tập Toán 10 – Chân trời sáng tạo là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, các em sẽ tự tin giải bài tập này và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 10