Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 5 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp các em học sinh tự tin hơn trong quá trình học tập môn Toán.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng hành cùng các em trên con đường chinh phục kiến thức.
Với một bình rỗng có dung tích 2l, một bạn học sinh thực hiện thí nghiệm theo các bước như sau:
Đề bài
Với một bình rỗng có dung tích 2l, một bạn học sinh thực hiện thí nghiệm theo các bước như sau:
Bước 1: Rót 1l nước vào bình, rồi rót đi một nửa lượng nước trong bình.
Bước 2: Rót 1l nước vào bình, rồi lại rót đi một nửa lượng lước trong bình.
Cứ như vậy, thực hiện bước 3, 4, …
Kí hiệu \({a_n}\) là lượng nước có tron bình sau bước n \((n \in \mathbb{N}*)\)
a) Tính \({a_1},{a_2},{a_3}\). Từ đó dự đoán công thức tính \({a_n}\) với \(n \in \mathbb{N}*\)
b) Chứng minh công thức trên bằng phương pháp quy nạp toán học.
Lời giải chi tiết
a)
\(\begin{array}{l}{a_1} = \frac{{2 + 1}}{2} = \frac{3}{2} = \frac{{{2^1} + 1}}{{{2^1}}};\\{a_2} = \frac{{\frac{3}{2} + 1}}{2} = \frac{5}{4} = \frac{{{2^2} + 1}}{{{2^2}}};\\{a_3} = \frac{{\frac{5}{4} + 1}}{2} = \frac{9}{8} = \frac{{{2^3} + 1}}{{{2^3}}}\end{array}\).
Từ đó ta dự đoán \({a_n} = \frac{{{2^n} + 1}}{{{2^n}}}\) với \(n \in \mathbb{N}*\)
b)
Ta chứng minh bằng quy nạp theo n.
Bước 1: Với \(n = 1\) ta có \({a_1} = \frac{{{2^1} + 1}}{{{2^1}}}\)
Như vậy công thức đúng cho trường hợp \(n = 1\)
Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có: \({a_k} = \frac{{{2^k} + 1}}{{{2^k}}}\)
Ta sẽ chứng minh công thức đúng với \(n = k + 1\), nghĩa là cần chứng minh \({a_{k + 1}} = \frac{{{2^{k + 1}} + 1}}{{{2^{k + 1}}}}\)
Sử dụng giả thiết quy nạp, ta có
\({a_{k + 1}} = \frac{{{a_k} + 1}}{2} = \frac{{\frac{{{2^k} + 1}}{{{2^k}}} + 1}}{2} = \frac{{\frac{{{2^k} + 1 + {2^k}}}{{{2^k}}}}}{2} = \frac{{{{2.2}^k} + 1}}{{{2^{k + 1}}}} = \frac{{{2^{k + 1}} + 1}}{{{2^{k + 1}}}}\)
Vậy công thức đúng với \(n = k + 1\).
Theo nguyên lí quy nạp toán học, công thức đúng với mọi \(n \in \mathbb{N}*\).
Bài 5 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ, và các ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 5 trang 40, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Ở đây sẽ là nội dung giải chi tiết từng câu hỏi của bài 5, ví dụ:)
Lời giải: ...
Lời giải: ...
Để giải quyết bài 5 trang 40 một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Dưới đây là một số mẹo giúp các em giải bài tập vectơ một cách hiệu quả:
Để củng cố kiến thức, các em có thể làm thêm các bài tập tương tự sau:
Bài 5 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo là một bài tập quan trọng, giúp các em học sinh củng cố kiến thức về vectơ và các ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, các em sẽ tự tin hơn trong quá trình học tập môn Toán.