Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Giải bài 6 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Giải bài 6 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 6 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách dễ hiểu, cùng với những kiến thức nền tảng cần thiết để nắm vững nội dung bài học.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tự tin chinh phục môn Toán.

Tìm hệ số của ({x^3}) trong khai triển của biểu thức sau:

Đề bài

Tìm hệ số của \({x^3}\) trong khai triển của biểu thức sau:

a) \({(1 - 3x)^8}\)

b) \({\left( {1 + \frac{x}{2}} \right)^7}\)

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo 1

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{(ax)^k}{b^{n - k}}\)

Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{a^k}{b^{n - k}}\)

Lời giải chi tiết

a) Theo công thức nhị thức Newton, ta có:

\({(1 - 3x)^8} = C_8^0 + C_9^1\left( { - 3x} \right) + ... + C_8^k{\left( { - 3x} \right)^k} + ... + C_8^8{\left( { - 3x} \right)^8} = \sum\limits_{k = 0}^8 {C_8^k{{.1}^k}.{{\left( { - 3x} \right)}^{8 - k}}} = \;\sum\limits_{k = 0}^8 {C_8^k{{.1}^k}.{{\left( { - 3} \right)}^{8 - k}}.{x^{8 - k}}} \)

Số hạng chứa \({x^3}\) ứng với \(8 - k = 3\) hay \(k = 5\). Do đó hệ số của \({x^3}\) là

\(C_8^5{(- 3)^3} =-1512\).

b) Theo công thức nhị thức Newton, ta có:

\({(3x + 2)^9} = C_9^0{\left( {3x} \right)^9} + C_9^1{\left( {3x} \right)^8}2 + ... + C_9^k{\left( {3x} \right)^{9 - k}}{2^k} + ... + C_9^8\left( {3x} \right){2^8} + C_9^9{2^9}\)\( = \sum\limits_{k = 0}^9 {C_9^k.{{\left( {3x} \right)}^k}{{.2}^{9 - k}}} = \;\sum\limits_{k = 0}^9 {C_9^k{{.3}^k}{{.2}^{9 - k}}.{x^k}} \)

Số hạng chứa \({x^3}\) ứng với \(9 - k = 3\) hay \(k = 6\). Do đó hệ số của \({x^3}\) là

\(C_9^6{3^6}{2^3} = 489888\)

\( = C_8^k{.1^k}.{\left( { - 3x} \right)^{8 - k}} = \;C_8^k{.1^k}.{\left( { - 3} \right)^{8 - k}}.{x^{8 - k}}\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 6 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 6 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo: Tổng quan

Bài 6 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và đặc biệt là ứng dụng của vectơ trong việc chứng minh các tính chất hình học.

Nội dung chi tiết bài 6 trang 40

Bài 6 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các vectơ: Yêu cầu học sinh xác định các vectơ từ hình vẽ hoặc từ các điểm cho trước.
  • Dạng 2: Thực hiện các phép toán vectơ: Tính tổng, hiệu, tích của các vectơ.
  • Dạng 3: Chứng minh các đẳng thức vectơ: Sử dụng các quy tắc phép toán vectơ để chứng minh các đẳng thức.
  • Dạng 4: Ứng dụng vectơ vào hình học: Chứng minh các tính chất của hình bình hành, hình chữ nhật, hình thoi, hình vuông, và các hình đa giác khác.

Lời giải chi tiết bài 6 trang 40

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 6 trang 40, chúng ta sẽ đi vào phân tích từng phần của bài tập. (Ở đây sẽ là lời giải chi tiết cho từng câu hỏi trong bài 6, bao gồm các bước giải, giải thích rõ ràng, và các lưu ý quan trọng). Ví dụ:

Ví dụ: Bài 6.1 trang 40

Cho hình bình hành ABCD. Gọi M là trung điểm của cạnh AB. Chứng minh rằng: overrightarrow{CM} = (overrightarrow{CA} +overrightarrow{CB})/2

Lời giải:

  1. Ta có: overrightarrow{CA} =overrightarrow{CB} +overrightarrow{BA}
  2. overrightarrow{CM} =overrightarrow{CA} +overrightarrow{AM}
  3. Vì M là trung điểm của AB nên overrightarrow{AM} = (1/2)overrightarrow{AB}
  4. overrightarrow{AB} = -overrightarrow{BA} nên overrightarrow{AM} = -(1/2)overrightarrow{BA}
  5. Thay vào (2) ta có: overrightarrow{CM} =overrightarrow{CA} - (1/2)overrightarrow{BA}
  6. Thay (1) vào (3) ta có: overrightarrow{CM} = (overrightarrow{CB} +overrightarrow{BA}) - (1/2)overrightarrow{BA} =overrightarrow{CB} + (1/2)overrightarrow{BA} = (overrightarrow{CA} +overrightarrow{CB})/2 (đpcm)

Các lưu ý khi giải bài tập về vectơ

Khi giải các bài tập về vectơ, các em cần lưu ý những điều sau:

  • Nắm vững các định nghĩa và tính chất của vectơ.
  • Sử dụng các quy tắc phép toán vectơ một cách chính xác.
  • Vẽ hình để minh họa cho bài toán, giúp dễ dàng hình dung và tìm ra lời giải.
  • Kiểm tra lại kết quả sau khi giải xong.

Tài liệu tham khảo

Để học tốt môn Toán 10, các em có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 10 – Chân trời sáng tạo
  • Sách bài tập Toán 10 – Chân trời sáng tạo
  • Các trang web học Toán online uy tín như giaitoan.edu.vn

Kết luận

Bài 6 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo là một bài tập quan trọng, giúp các em củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin giải quyết bài tập này một cách hiệu quả.

Tài liệu, đề thi và đáp án Toán 10