Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 3 trang 30 Chuyên đề học tập Toán 10 – Chân trời sáng tạo. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách dễ hiểu, cùng với những lưu ý quan trọng để nắm vững kiến thức.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tự tin chinh phục môn Toán.
Chứng minh rằng \({8^n} > {n^3}\) với mọi \(n \in \mathbb{N}*\).
Đề bài
Chứng minh rằng \({8^n} > {n^3}\) với mọi \(n \in \mathbb{N}*\).
Lời giải chi tiết
Ta chứng minh bằng quy nạp theo n.
Bước 1: Với \(n = 1\) ta có \({8^1} > {1^3}\)
Như vậy bất đẳng thức đúng cho trường hợp \(n = 1\)
Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có: \({8^k} > {k^3}\)
Ta sẽ chứng minh bất đẳng thức đúng với \(n = k + 1\), nghĩa là cần chứng minh \({8^{k + 1}} > {(k + 1)^3}\)
Sử dụng giả thiết quy nạp, ta có
\({8^{k + 1}} > 8{k^3} = {k^3} + 3{k^3} + 3{k^3} + {k^3} > {k^3} + 3{k^2} + 3k + 1 = {(k + 1)^3}\)
Vậy bất đẳng thức đúng với \(n = k + 1\).
Theo nguyên lí quy nạp toán học, bất đẳng thức đúng với mọi \(n \in \mathbb{N}*\).
Bài 3 trang 30 Chuyên đề học tập Toán 10 – Chân trời sáng tạo thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ, phép toán vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các quy tắc cộng, trừ, nhân vectơ với một số thực.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 3 trang 30, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Ở đây sẽ là lời giải chi tiết cho từng câu hỏi của bài 3, trang 30, Chuyên đề học tập Toán 10 – Chân trời sáng tạo. Ví dụ:)
Lời giải: ...
Lời giải: ...
Để giải quyết bài 3 trang 30 một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Dưới đây là một số mẹo giúp các em giải bài tập vectơ một cách dễ dàng hơn:
Để củng cố kiến thức, các em có thể làm thêm các bài tập tương tự sau:
Bài 3 trang 30 Chuyên đề học tập Toán 10 – Chân trời sáng tạo là một bài tập quan trọng, giúp các em củng cố kiến thức về vectơ và ứng dụng trong hình học. Hy vọng với lời giải chi tiết và những kiến thức bổ ích trên, các em sẽ tự tin giải quyết bài tập này một cách hiệu quả.