Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 3 trang 37, 38 Chuyên đề học tập Toán 10 - Chân trời sáng tạo. Tại giaitoan.edu.vn, chúng tôi cung cấp các bài giải được trình bày rõ ràng, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự.
Chúng tôi hiểu rằng việc học toán đôi khi có thể gặp nhiều khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của chúng tôi đã biên soạn các lời giải chi tiết, kèm theo các lưu ý quan trọng để giúp các em hiểu sâu sắc hơn về bài học.
Xác định hệ số của ({x^2}) trong khai triển của ({(3x + 2)^9})
Xác định hệ số của \({x^2}\) trong khai triển của \({(3x + 2)^9}\)
Phương pháp giải:
Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{(ax)^k}{b^{n - k}}\)
Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{a^k}{b^{n - k}}\)
Lời giải chi tiết:
Theo công thức nhị thức Newton, ta có:
\({(3x + 2)^9} = C_9^0{\left( {3x} \right)^9} + C_9^1{\left( {3x} \right)^8}2 + ... + C_9^k{\left( {3x} \right)^{9 - k}}{2^k} + ... + C_9^8\left( {3x} \right){2^8} + C_9^9{2^9}\)
Số hạng chứa \({x^2}\) ứng với \(9 - k = 2\) hay \(k = 7\). Do đó hệ số của \({x^2}\) là
\(C_9^7{3^2}{2^7} = 36.9.128 = 41472\)
Chứng minh rằng, với mọi \(n \in \mathbb{N}*\), ta có
\(C_n^0 - C_n^1 + C_n^2 - C_n^3 + ... + {\left( { - 1} \right)^n}C_n^n = 0\)
Phương pháp giải:
Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Lời giải chi tiết:
Áp dụng công thức nhị thức Newton, ta có:
\({(1 + x)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}\)
Thay \(x = - 1\) ta được:
\(0 = C_n^0 + ( - 1)C_n^1 + {( - 1)^2}C_n^2 + {( - 1)^3}C_n^3 + ... + {\left( { - 1} \right)^n}C_n^n\)
Hay \(C_n^0 - C_n^1 + C_n^2 - C_n^3 + ... + {\left( { - 1} \right)^n}C_n^n = 0\)
Biết rằng trong khai triển của \({(x + a)^6}\) với a là một số thực, hệ số của \({x^4}\) là 60. Tìm giá trị của a.
Phương pháp giải:
Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{(ax)^k}{b^{n - k}}\)
Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{a^k}{b^{n - k}}\)
Lời giải chi tiết:
Áp dụng công thức nhị thức Newton, ta có:
\({(x + a)^6} = C_6^0{x^6} + C_6^1{x^5}a + ... + C_6^k{x^{6 - k}}{a^k} + ... + C_6^6{a^6}\)
Số hạng chứa \({x^4}\) ứng với \(6 - k = 4\) hay \(k = 2\). Hệ số của số hạng chứa \({x^4}\) là \(C_6^2{a^2}\)
Theo giả thiết ta có: \(C_6^2{a^2} = 60\)
\( \Leftrightarrow 15{a^2} = 60 \Leftrightarrow {a^2} = 4 \Leftrightarrow \left[ \begin{array}{l}a = 2\\a = - 2\end{array} \right.\)
Vậy \(a = 2\) hoặc \(a = - 2\).
Trong hộp A có 10 quả cầu được đánh số từ 1 đến 10. Người ta lấy một số quả cầu từ hộp A rồi cho vào hộp B. Có tất cả bao nhiêu cách lấy, tính cả trường hợp lấy 0 quả (tức là không lấy quả nào)?
Phương pháp giải:
Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Lời giải chi tiết:
Giả sử lấy k quả cầu từ hộp A cho sáng hộp B. \((0 \le k \le 10)\)
Để lấy k quả cầu, có \(C_{10}^k\) cách lấy. (trường hợp không lấy quả nào được tính là 1 cách, bằng \(C_{10}^0\))
Vậy số cách lấy một số quả cầu (kể cả cách lấy 0 quả) từ hộp A cho sang hộp B là:
\(C_{10}^0 + C_{10}^1 + C_{10}^2 + ... + C_{10}^{10} = {2^{10}} = 1024.\)
Xác định hệ số của \({x^2}\) trong khai triển của \({(3x + 2)^9}\)
Phương pháp giải:
Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{(ax)^k}{b^{n - k}}\)
Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{a^k}{b^{n - k}}\)
Lời giải chi tiết:
Theo công thức nhị thức Newton, ta có:
\({(3x + 2)^9} = C_9^0{\left( {3x} \right)^9} + C_9^1{\left( {3x} \right)^8}2 + ... + C_9^k{\left( {3x} \right)^{9 - k}}{2^k} + ... + C_9^8\left( {3x} \right){2^8} + C_9^9{2^9}\)
Số hạng chứa \({x^2}\) ứng với \(9 - k = 2\) hay \(k = 7\). Do đó hệ số của \({x^2}\) là
\(C_9^7{3^2}{2^7} = 36.9.128 = 41472\)
Biết rằng trong khai triển của \({(x + a)^6}\) với a là một số thực, hệ số của \({x^4}\) là 60. Tìm giá trị của a.
Phương pháp giải:
Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{(ax)^k}{b^{n - k}}\)
Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{a^k}{b^{n - k}}\)
Lời giải chi tiết:
Áp dụng công thức nhị thức Newton, ta có:
\({(x + a)^6} = C_6^0{x^6} + C_6^1{x^5}a + ... + C_6^k{x^{6 - k}}{a^k} + ... + C_6^6{a^6}\)
Số hạng chứa \({x^4}\) ứng với \(6 - k = 4\) hay \(k = 2\). Hệ số của số hạng chứa \({x^4}\) là \(C_6^2{a^2}\)
Theo giả thiết ta có: \(C_6^2{a^2} = 60\)
\( \Leftrightarrow 15{a^2} = 60 \Leftrightarrow {a^2} = 4 \Leftrightarrow \left[ \begin{array}{l}a = 2\\a = - 2\end{array} \right.\)
Vậy \(a = 2\) hoặc \(a = - 2\).
Chứng minh rằng, với mọi \(n \in \mathbb{N}*\), ta có
\(C_n^0 - C_n^1 + C_n^2 - C_n^3 + ... + {\left( { - 1} \right)^n}C_n^n = 0\)
Phương pháp giải:
Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Lời giải chi tiết:
Áp dụng công thức nhị thức Newton, ta có:
\({(1 + x)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}\)
Thay \(x = - 1\) ta được:
\(0 = C_n^0 + ( - 1)C_n^1 + {( - 1)^2}C_n^2 + {( - 1)^3}C_n^3 + ... + {\left( { - 1} \right)^n}C_n^n\)
Hay \(C_n^0 - C_n^1 + C_n^2 - C_n^3 + ... + {\left( { - 1} \right)^n}C_n^n = 0\)
Trong hộp A có 10 quả cầu được đánh số từ 1 đến 10. Người ta lấy một số quả cầu từ hộp A rồi cho vào hộp B. Có tất cả bao nhiêu cách lấy, tính cả trường hợp lấy 0 quả (tức là không lấy quả nào)?
Phương pháp giải:
Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Lời giải chi tiết:
Giả sử lấy k quả cầu từ hộp A cho sáng hộp B. \((0 \le k \le 10)\)
Để lấy k quả cầu, có \(C_{10}^k\) cách lấy. (trường hợp không lấy quả nào được tính là 1 cách, bằng \(C_{10}^0\))
Vậy số cách lấy một số quả cầu (kể cả cách lấy 0 quả) từ hộp A cho sang hộp B là:
\(C_{10}^0 + C_{10}^1 + C_{10}^2 + ... + C_{10}^{10} = {2^{10}} = 1024.\)
Mục 3 trang 37, 38 trong Chuyên đề học tập Toán 10 - Chân trời sáng tạo tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Các bài tập trong mục này thường yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và đặc biệt là ứng dụng của vectơ trong việc chứng minh các tính chất hình học.
Bài tập này yêu cầu học sinh xác định các vectơ dựa trên hình vẽ hoặc thông tin đã cho. Để giải bài tập này, học sinh cần nắm vững cách biểu diễn vectơ, xác định hướng và độ dài của vectơ. Ví dụ, cho hình hộp chữ nhật ABCD.EFGH, hãy xác định các vectơ bằng vectơ AB.
Bài tập này yêu cầu học sinh thực hiện các phép toán cộng, trừ vectơ, tích của một số với vectơ. Để giải bài tập này, học sinh cần nắm vững các quy tắc thực hiện các phép toán vectơ. Ví dụ, cho hai vectơ a = (1; 2; 3) và b = (-1; 0; 1), hãy tính vectơ a + b và 2a.
Đây là loại bài tập quan trọng nhất trong mục này. Để giải bài tập này, học sinh cần vận dụng các kiến thức về vectơ để chứng minh các tính chất hình học như chứng minh hai đường thẳng song song, chứng minh hai tam giác bằng nhau, chứng minh một điểm nằm trên một đường thẳng, v.v. Ví dụ, chứng minh rằng tứ giác ABCD là hình bình hành bằng phương pháp vectơ.
Bài tập: Cho hình vuông ABCD có cạnh bằng a. Gọi M là trung điểm của cạnh BC. Tính độ dài của vectơ AM.
Lời giải:
Đặt A là gốc tọa độ, AB là trục Ox và AD là trục Oy. Khi đó, ta có các tọa độ sau:
Suy ra, vectơ AM = (a - 0; a/2 - 0) = (a; a/2).
Độ dài của vectơ AM là |AM| = √((a)^2 + (a/2)^2) = √(a^2 + a^2/4) = √(5a^2/4) = (a√5)/2.
Để học tốt môn Toán nói chung và phần vectơ trong không gian nói riêng, các em cần:
Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả trên, các em học sinh sẽ tự tin hơn khi giải các bài tập mục 3 trang 37, 38 Chuyên đề học tập Toán 10 - Chân trời sáng tạo. Chúc các em học tập tốt!