Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 2.1 trang 30 Chuyên đề học tập Toán 10 – Kết nối tri thức một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những phương pháp giải bài tập Toán 10 khoa học, logic và dễ tiếp thu, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Sử dụng phương pháp quy nạp toán học, chứng minh các đẳng thức sau đúng với mọi số tự nhiên
Đề bài
Sử dụng phương pháp quy nạp toán học, chứng minh các đẳng thức sau đúng với mọi số tự nhiên \(n \ge 1\)
a) \(2 + 4 + 6 + ... + 2n = n(n + 1)\)
b) \({1^2} + {2^2} + {3^2} + ... + {n^2} = \frac{{n(n + 1)(2n + 1)}}{6}\)
Phương pháp giải - Xem chi tiết
Chứng minh mệnh đề đúng với \(n \ge p\) thì:
Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\)
Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1.\) Kết luận.
Lời giải chi tiết
a) Ta chứng minh a) bằng phương pháp quy nạp
Với \(n = 1\) ta có \(2.1 = 1.(1 + 1)\)
Vậy a) đúng với \(n = 1\)
Giải sử a) đúng với \(n = k\) tức là ta có \(2 + 4 + 6 + ... + 2k = k(k + 1)\)
Ta chứng minh a) đúng với \(n = k + 1\) tức là chứng minh \(2 + 4 + 6 + ... + 2k + 2(k + 1) = (k + 1)(k + 2)\)
Thật vậy, ta có
\(\left( {2 + 4 + 6 + ... + 2k} \right) + 2(k + 1) = k(k + 1) + 2(k + 1) = (k + 1)(k + 2)\)
Vậy a) đúng với mọi số tự nhiên \(n \ge 1.\)
b) Ta chứng minh b) bằng phương pháp quy nạp
Với \(n = 1\) ta có \({1^2} = \frac{{1.(1 + 1)(2.1 + 1)}}{6}\)
Vậy b) đúng với \(n = 1\)
Giải sử b) đúng với \(n = k\) tức là ta có \({1^2} + {2^2} + {3^2} + ... + {k^2} = \frac{{k(k + 1)(2k + 1)}}{6}\)
Ta chứng minh b) đúng với \(n = k + 1\) tức là chứng minh \({1^2} + {2^2} + {3^2} + ... + {k^2} + {(k + 1)^2} = \frac{{(k + 1)(k + 2)\left[ {2(k + 1) + 1} \right]}}{6}\)
Thật vậy, ta có
\(\begin{array}{l}{1^2} + {2^2} + {3^2} + ... + {k^2} + {(k + 1)^2} = \frac{{k(k + 1)(2k + 1)}}{6} + {(k + 1)^2}\\ = \frac{{(k + 1)}}{6}\left[ {k(2k + 1) + 6(k + 1)} \right] = \frac{{(k + 1)}}{6}.\left( {2{k^2} + k + 6k + 6} \right)\\ = \frac{{(k + 1)}}{6}.\left( {2{k^2} + 7k + 6} \right) = \frac{{(k + 1)}}{6}.(k + 2).(2k + 3)\\ = \frac{{(k + 1)(k + 2)\left[ {2(k + 1) + 1} \right]}}{6}\end{array}\)
Vậy b) đúng với mọi số tự nhiên \(n \ge 1.\)
Bài 2.1 trang 30 Chuyên đề học tập Toán 10 – Kết nối tri thức thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp và các tính chất cơ bản để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng là yếu tố then chốt để giải quyết thành công bài toán này.
(Nội dung đề bài sẽ được chèn vào đây. Ví dụ:) Cho hai tập hợp A = {1; 2; 3; 4} và B = {3; 4; 5; 6}. Hãy tìm:
Để giải quyết bài tập về tập hợp, chúng ta cần nắm vững các khái niệm và quy tắc sau:
Áp dụng các quy tắc trên, ta có:
Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự sau:
Khi giải bài tập về tập hợp, bạn cần chú ý:
Tập hợp có rất nhiều ứng dụng trong thực tế, ví dụ:
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 2.1 trang 30 Chuyên đề học tập Toán 10 – Kết nối tri thức. Chúc bạn học tập tốt!
Phép toán | Ký hiệu | Mô tả |
---|---|---|
Hợp | ∪ | Tập hợp chứa tất cả các phần tử của hai tập hợp. |
Giao | ∩ | Tập hợp chứa các phần tử chung của hai tập hợp. |
Hiệu | \ | Tập hợp chứa các phần tử thuộc tập hợp thứ nhất nhưng không thuộc tập hợp thứ hai. |