Bài 3.9 trang 52 Chuyên đề học tập Toán 10 thuộc chương trình Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng kiến thức về vectơ vào giải quyết các bài toán hình học.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững phương pháp giải và tự tin làm bài tập.
Hãy cùng khám phá lời giải bài 3.9 trang 52 ngay dưới đây!
Trong mặt phẳng tọa độ Oxy, cho hypebol (H) có phương trình chính tắc. Lập phương trình chính tắc của (H) trong mỗi trường hợp sau:
Đề bài
Trong mặt phẳng tọa độ Oxy, cho hypebol (H) có phương trình chính tắc. Lập phương trình chính tắc của (H) trong mỗi trường hợp sau:
a) (H) có nửa khung thực tế bằng 4, tiêu cự bằng 10.
b) (H) có tiêu cự bằng \(2\sqrt {13} \), một đường tiệm cận là \(y = \frac{2}{3}x\).
c) (H) có tâm sai bằng \(e = \sqrt 5 \), và đi qua điểm \((\sqrt {10} ;6)\).
Phương pháp giải - Xem chi tiết
PTCT của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).
+ Độ dài nửa trục bằng a.
+ Tiêu cự bằng \(2c = 2\sqrt {{a^2} + {b^2}} \).
+ Hai đường tiệm cận \(y = \pm \frac{b}{a}x\).
+ Tâm sai của hypebol: \(e = \frac{c}{a}\).
Lời giải chi tiết
a)
+ Độ dài nửa trục bằng 4 \( \Rightarrow a = 4\).
+ Tiêu cự bằng\(10 = 2c = 2\sqrt {{a^2} + {b^2}} \)
\(\begin{array}{l} \Leftrightarrow 10 = 2\sqrt {{4^2} + {b^2}} \\ \Leftrightarrow \sqrt {{4^2} + {b^2}} = 5\\ \Leftrightarrow {4^2} + {b^2} = 25\\ \Leftrightarrow {b^2} = 9\\ \Rightarrow b = 3.\end{array}\)
⇒PTCT của hypebol
\(\frac{{{x^2}}}{{{4^2}}} - \frac{{{y^2}}}{{{3^2}}} = 1 \Leftrightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1.\)
b)
+ Tiêu cự bằng \(2\sqrt {13} = 2c \Rightarrow c = \sqrt {13} .\)
+ Ta có: \(2\sqrt {13} = 2c = 2\sqrt {{a^2} + {b^2}} \)
\(\begin{array}{l} \Leftrightarrow \sqrt {13} = \sqrt {{a^2} + {b^2}} \\ \Leftrightarrow {a^2} + {b^2} = 13.\end{array}\)
Đường tiệm cận \(y = \frac{2}{3}x = \frac{b}{a}x \Rightarrow \frac{b}{a} = \frac{2}{3}.\)
\( \Leftrightarrow \frac{a}{3} = \frac{b}{2} \Leftrightarrow \frac{{{a^2}}}{9} = \frac{{{b^2}}}{4} = \frac{{{a^2} + {b^2}}}{{13}} = \frac{{13}}{{13}} = 1.\)
\( \Rightarrow a = 3,b = 2.\)
⇒PTCT của hypebol
\(\frac{{{x^2}}}{{{3^2}}} - \frac{{{y^2}}}{{{2^2}}} = 1 \Leftrightarrow \frac{{{x^2}}}{9} - \frac{{{y^2}}}{4} = 1.\)
c,
+ Tâm sai của hypebol:\(e = \frac{c}{a} = \sqrt 5 \Leftrightarrow c = a\sqrt 5 = \sqrt {{a^2} + {b^2}} \)
\( \Leftrightarrow {a^2} + {b^2} = 5{a^2} \Rightarrow {b^2} = 4{a^2}\)(1).
+ Hypebol đi qua điểm \((\sqrt {10} ;6)\)nên ta có: \(\frac{{{{(\sqrt {10} )}^2}}}{{{a^2}}} - \frac{{{6^2}}}{{{b^2}}} = 1\) (2).
Thay (1) vào (2) ta có:
\(\frac{{10}}{{{a^2}}} - \frac{{36}}{{4{a^2}}} = 1 \Leftrightarrow \frac{{10}}{{{a^2}}} - \frac{9}{{{a^2}}} = 1\)
\( \Leftrightarrow \frac{1}{{{a^2}}} = 1 \Rightarrow a = 1 \Rightarrow {b^2} = 4 \Rightarrow b = 2.\)
⇒PTCT của hypebol
\(\frac{{{x^2}}}{{{1^2}}} - \frac{{{y^2}}}{{{2^2}}} = 1 \Leftrightarrow {x^2} - \frac{{{y^2}}}{4} = 1.\)
+ Độ dài nửa trục bằng 4 \( \Rightarrow a = 4\).
+ Tiêu cự bằng\(10 = 2c = 2\sqrt {{a^2} + {b^2}} \)
\(\begin{array}{l} \Leftrightarrow 10 = 2\sqrt {{4^2} + {b^2}} \\ \Leftrightarrow \sqrt {{4^2} + {b^2}} = 5\\ \Leftrightarrow {4^2} + {b^2} = 25\\ \Leftrightarrow {b^2} = 9\\ \Rightarrow b = 3.\end{array}\)
⇒PTCT của hypebol: \(\frac{{{x^2}}}{{{4^2}}} - \frac{{{y^2}}}{{{3^2}}} = 1 \Leftrightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1.\)
b)
+ Tiêu cự bằng\(2\sqrt {13} = 2c \Rightarrow c = \sqrt {13} .\)
+ Ta có:\(2\sqrt {13} = 2c = 2\sqrt {{a^2} + {b^2}} \)
\(\begin{array}{l} \Leftrightarrow \sqrt {13} = \sqrt {{a^2} + {b^2}} \\ \Leftrightarrow {a^2} + {b^2} = 13.\end{array}\)
Đường tiệm cận \(y = \frac{2}{3}x = \frac{b}{a}x \Rightarrow \frac{b}{a} = \frac{2}{3}.\)
\( \Leftrightarrow \frac{a}{3} = \frac{b}{2} \Leftrightarrow \frac{{{a^2}}}{9} = \frac{{{b^2}}}{4} = \frac{{{a^2} + {b^2}}}{{13}} = \frac{{13}}{{13}} = 1.\)
\( \Rightarrow a = 3,b = 2.\)
⇒PTCT của hypebol: \(\frac{{{x^2}}}{{{3^2}}} - \frac{{{y^2}}}{{{2^2}}} = 1 \Leftrightarrow \frac{{{x^2}}}{9} - \frac{{{y^2}}}{4} = 1.\)
c,
Bài 3.9 trang 52 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống yêu cầu học sinh vận dụng kiến thức về vectơ để chứng minh một đẳng thức vectơ liên quan đến trung điểm của các cạnh trong một hình bình hành. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Đề bài: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB và CD. Chứng minh rằng AM = NC.
Lời giải:
Bài toán 3.9 là một ví dụ điển hình về việc ứng dụng kiến thức về vectơ vào giải quyết các bài toán hình học. Để nâng cao kỹ năng giải toán, bạn có thể thử giải các bài tập tương tự, ví dụ:
Khi giải các bài tập về vectơ, bạn cần chú ý các điểm sau:
Giaitoan.edu.vn là một nền tảng học toán online uy tín, cung cấp đầy đủ các tài liệu học tập, bài giảng, bài tập và lời giải chi tiết cho các môn Toán từ lớp 6 đến lớp 12. Chúng tôi cam kết mang đến cho bạn trải nghiệm học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong các kỳ thi.
Khái niệm | Định nghĩa |
---|---|
Vectơ | Một đoạn thẳng có hướng. |
Trung điểm | Điểm nằm chính giữa hai đầu của đoạn thẳng. |
Hình bình hành | Tứ giác có hai cặp cạnh đối song song. |
Hy vọng với lời giải chi tiết và những lưu ý trên, bạn đã hiểu rõ cách giải bài 3.9 trang 52 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống. Chúc bạn học tập tốt!