Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn cách giải bài 2.2 trang 30 trong Chuyên đề học tập Toán 10 – Kết nối tri thức một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Mỗi khẳng định sau là đúng hay sai? Nếu em nghĩ là đúng, hãy chứng minh nó. Nếu em nghĩ nó sai, hãy đưa ra một phản ví dụ.
Đề bài
Mỗi khẳng định sau là đúng hay sai? Nếu em nghĩ là đúng, hãy chứng minh nó. Nếu em nghĩ nó sai, hãy đưa ra một phản ví dụ.
a) \(p(n) = {n^2} - n + 11\) là số nguyên tố với mọi số tự nhiên n
b) \({n^2} > n\) với mọi số tự nhiên \(n \ge 2\)
Lời giải chi tiết
a) Khẳng định \(p(n) = {n^2} - n + 11\) là số nguyên tố với mọi số tự nhiên n là một khẳng định sai. Thật vậy, với \(n = 11\) ta có \(p(11) = {11^2}\) là hợp số (vì nó chia hết cho 11).
b)
Cách 1:
Xét \(T = {n^2} - n\), ta chứng minh \(T > 0\forall n \ge 2\)
Vì \(n \ge 2\) nên \(n - 1 \ge 1\). Do đó \(T = n(n - 1) \ge 2 > 0\)
Vậy \({n^2} > n\) với mọi số tự nhiên \(n \ge 2\)
Cách 2:
Ta chứng minh b) bằng phương pháp quy nạp
Với \(n = 2\) ta có \({2^2} > 2\)
Vậy b) đúng với \(n = 2\)
Giải sử b) đúng với \(n = k\) tức là ta có \({k^2} > k\)
Ta chứng minh b) đúng với \(n = k + 1\) tức là chứng minh \({(k + 1)^2} > k + 1\)
Thật vậy, ta có
\({(k + 1)^2} = {k^2} + 2k + 1 > {k^2} + 1 > k + 1\) (do \(k \ge 2\) và \({k^2} > k\) (theo giả thiết quy nạp))
Vậy b) đúng với mọi số tự nhiên \(n \ge 2.\)
Bài 2.2 trang 30 Chuyên đề học tập Toán 10 – Kết nối tri thức thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Để giải bài này, học sinh cần nắm vững các khái niệm cơ bản như:
Trước khi bắt đầu giải bài, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu. Thông thường, bài 2.2 trang 30 sẽ yêu cầu học sinh chứng minh một đẳng thức vectơ, tìm một điểm thỏa mãn một điều kiện nào đó, hoặc tính một độ dài, góc. Việc phân tích đề bài giúp chúng ta lựa chọn phương pháp giải phù hợp.
Dưới đây là lời giải chi tiết cho bài 2.2 trang 30 Chuyên đề học tập Toán 10 – Kết nối tri thức. Chúng tôi sẽ trình bày từng bước giải một cách rõ ràng, kèm theo các giải thích chi tiết để bạn dễ dàng theo dõi.
(Nội dung lời giải chi tiết bài 2.2 trang 30 sẽ được trình bày tại đây. Ví dụ:)
Ví dụ: Giả sử đề bài yêu cầu chứng minh rằng với mọi điểm M trên đường thẳng d, ta có MA + MB = 2MC, trong đó A, B là hai điểm cố định và C là trung điểm của đoạn AB.
Khi giải các bài toán về vectơ, bạn cần chú ý đến các điều kiện của bài toán, lựa chọn hệ tọa độ phù hợp, và sử dụng các công thức một cách chính xác. Ngoài ra, việc vẽ hình minh họa cũng rất quan trọng, giúp bạn hình dung rõ hơn về bài toán và tìm ra phương pháp giải phù hợp.
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Hy vọng rằng với hướng dẫn chi tiết này, bạn đã có thể giải bài 2.2 trang 30 Chuyên đề học tập Toán 10 – Kết nối tri thức một cách dễ dàng và hiệu quả. Hãy luyện tập thường xuyên để nắm vững kiến thức và tự tin hơn trong các kỳ thi. Chúc bạn học tốt!
Công thức | Mô tả |
---|---|
a + b = b + a | Tính giao hoán của phép cộng vectơ |
(a + b) + c = a + (b + c) | Tính kết hợp của phép cộng vectơ |
a + 0 = a | Phần tử trung hòa của phép cộng vectơ |
a + (-a) = 0 | Phần tử đối của phép cộng vectơ |
k(a + b) = ka + kb | Tính chất phân phối của phép nhân với một số thực đối với phép cộng vectơ |