Giaitoan.edu.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho các bài tập trong mục 2 trang 35, 36 của Chuyên đề học tập Toán 10 - Kết nối tri thức. Chúng tôi hiểu rằng việc tự học Toán đôi khi gặp nhiều khó khăn, đặc biệt là với những chuyên đề nâng cao.
Với đội ngũ giáo viên giàu kinh nghiệm, chúng tôi cam kết cung cấp những lời giải chính xác, đầy đủ và dễ tiếp thu, giúp các em học sinh tự tin hơn trong quá trình học tập.
Quan sát khai triển nhị thức của ({(a + b)^n}) với (n in left{ {1;2;3;4;5} right}) ở HDD3, hãy dự đoán công thức khai triển trong tường hợp tổng quát.
Quan sát khai triển nhị thức của \({(a + b)^n}\) với \(n \in \left\{ {1;2;3;4;5} \right\}\) ở HDD3, hãy dự đoán công thức khai triển trong tường hợp tổng quát.
Lời giải chi tiết:
Quan sát khai triển nhị thức của \({(a + b)^n}\) với \(n \in \left\{ {1;2;3;4;5} \right\}\), ta thấy:
+ Công thức khai triển có n+1 số hạng,
+ Từ trái qua phải:
Hệ số khai triển của các số hạng lần lượt là \(C_n^0,C_n^1,...,C_n^n\).
Số mũ của a giảm dần từ n về 0.
Số mũ của b tăng dần từ 0 đến n.
=> Dự đoán \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Khai triển \({(x - 2y)^6}\)
Phương pháp giải:
Áp dụng \({(a + b)^6} = C_6^0{a^6} + C_6^1{a^5}b + C_6^2{a^4}{b^2} + C_6^3{a^3}{b^3} + C_6^4{a^2}{b^4} + C_6^5a{b^5} + C_6^6{b^6}\)
Với \(a = x,b = - 2y\)
Lời giải chi tiết:
Theo công thức nhị thức Newton, ta có:
\(\begin{array}{l}{(x - 2y)^6} = C_6^0{x^6} + C_6^1{x^5}.2y + C_6^2{x^4}{\left( {2y} \right)^2} + C_6^3{x^3}{\left( {2y} \right)^3} + C_6^4{x^2}{\left( {2y} \right)^4} + C_6^5x{\left( {2y} \right)^5} + C_6^6{\left( {2y} \right)^6}\\ = 1.{x^6} + 6.{x^5}.2y + 15.{x^4}.4{y^2} + 20{x^3}.8{y^3} + 15{x^2}16{y^4} + 6x.32{y^5} + 1.64{y^6}\\ = {x^6} + 12{x^5}y + 60{x^4}{y^2} + 160{x^3}{y^3} + 240{x^2}{y^4} + 192x{y^5} + 64{y^6}\end{array}\)
Tìm hệ số của \({x^7}\) trong khai triển thành đa thức của \({(2 - 3x)^{10}}\)
Phương pháp giải:
Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{(ax)^k}{b^{n - k}}\)
Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{a^k}{b^{n - k}}\)
Lời giải chi tiết:
Vì \({(2 - 3x)^{10}} = {( - 3x + 2)^{10}}\) nên
Số hạng chứa \({x^k}\) trong khai triển của \({(2 - 3x)^{10}}\) hay \({( - 3x + 2)^{10}}\)là \(C_{10}^{10 - k}{( - 3x)^k}{2^{10 - k}}\)
Số hạng chứa \({x^7}\) ứng với \(k = 7\), tức là số hạng \(C_{10}^3{( - 3x)^7}{2^3}\) hay \( - 2099520{x^7}\)
Vậy hệ số của \({x^7}\) trong khai triển của \({(2 - 3x)^{10}}\) là \( - 2099520\)
a) Viết khai triển nhị thức Newton của \({(1 + x)^n}\)
b) Cho \(x = 1\) trong khai triển ở câu a), viết đẳng thức nhận được. Giải thích ý nghĩa của đẳng thức này với lưu ý rằng \(C_n^k(0 \le k \le n)\) chính là số tập con gồm k phần tử của một tập hợp có n phần tử.
c) Tương tự, cho \(x = - 1\) trong khai triển ở câu a), viết đẳng thức nhận được. Giải thích ý nghĩa của đẳng thức này.
Lời giải chi tiết:
a) \({(1 + x)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}\)
b) Thay \(x = 1\) trong khai triển ở câu a), ta được:
\({2^n} = C_n^0 + C_n^1 + C_n^2 + ... + C_n^n\)
Với \(C_n^k(0 \le k \le n)\) chính là số tập con gồm k phần tử của một tập hợp có n phần tử, thì vế phải là tổng số tập con của tập hợp có n phần tử.
=> Số tập con của tập có n phần tử là: \({2^n}\)
c) Thay \(x = - 1\) trong khai triển ở câu a), ta được:
\(\begin{array}{l}0 = C_n^0 - C_n^1 + C_n^2 + ... + {( - 1)^n}C_n^n{x^n}\\ \Leftrightarrow C_n^0 + C_n^2 + C_n^4 + ... = C_n^1 + C_n^3 + C_n^5 + ...\end{array}\)
Ý nghĩa: Tập hợp có n phần tử có số tập con có chẵn phần tử = số tập con có lẻ phần tử.
Quan sát khai triển nhị thức của \({(a + b)^n}\) với \(n \in \left\{ {1;2;3;4;5} \right\}\) ở HDD3, hãy dự đoán công thức khai triển trong tường hợp tổng quát.
Lời giải chi tiết:
Quan sát khai triển nhị thức của \({(a + b)^n}\) với \(n \in \left\{ {1;2;3;4;5} \right\}\), ta thấy:
+ Công thức khai triển có n+1 số hạng,
+ Từ trái qua phải:
Hệ số khai triển của các số hạng lần lượt là \(C_n^0,C_n^1,...,C_n^n\).
Số mũ của a giảm dần từ n về 0.
Số mũ của b tăng dần từ 0 đến n.
=> Dự đoán \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Khai triển \({(x - 2y)^6}\)
Phương pháp giải:
Áp dụng \({(a + b)^6} = C_6^0{a^6} + C_6^1{a^5}b + C_6^2{a^4}{b^2} + C_6^3{a^3}{b^3} + C_6^4{a^2}{b^4} + C_6^5a{b^5} + C_6^6{b^6}\)
Với \(a = x,b = - 2y\)
Lời giải chi tiết:
Theo công thức nhị thức Newton, ta có:
\(\begin{array}{l}{(x - 2y)^6} = C_6^0{x^6} + C_6^1{x^5}.2y + C_6^2{x^4}{\left( {2y} \right)^2} + C_6^3{x^3}{\left( {2y} \right)^3} + C_6^4{x^2}{\left( {2y} \right)^4} + C_6^5x{\left( {2y} \right)^5} + C_6^6{\left( {2y} \right)^6}\\ = 1.{x^6} + 6.{x^5}.2y + 15.{x^4}.4{y^2} + 20{x^3}.8{y^3} + 15{x^2}16{y^4} + 6x.32{y^5} + 1.64{y^6}\\ = {x^6} + 12{x^5}y + 60{x^4}{y^2} + 160{x^3}{y^3} + 240{x^2}{y^4} + 192x{y^5} + 64{y^6}\end{array}\)
Tìm hệ số của \({x^7}\) trong khai triển thành đa thức của \({(2 - 3x)^{10}}\)
Phương pháp giải:
Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{(ax)^k}{b^{n - k}}\)
Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{a^k}{b^{n - k}}\)
Lời giải chi tiết:
Vì \({(2 - 3x)^{10}} = {( - 3x + 2)^{10}}\) nên
Số hạng chứa \({x^k}\) trong khai triển của \({(2 - 3x)^{10}}\) hay \({( - 3x + 2)^{10}}\)là \(C_{10}^{10 - k}{( - 3x)^k}{2^{10 - k}}\)
Số hạng chứa \({x^7}\) ứng với \(k = 7\), tức là số hạng \(C_{10}^3{( - 3x)^7}{2^3}\) hay \( - 2099520{x^7}\)
Vậy hệ số của \({x^7}\) trong khai triển của \({(2 - 3x)^{10}}\) là \( - 2099520\)
a) Viết khai triển nhị thức Newton của \({(1 + x)^n}\)
b) Cho \(x = 1\) trong khai triển ở câu a), viết đẳng thức nhận được. Giải thích ý nghĩa của đẳng thức này với lưu ý rằng \(C_n^k(0 \le k \le n)\) chính là số tập con gồm k phần tử của một tập hợp có n phần tử.
c) Tương tự, cho \(x = - 1\) trong khai triển ở câu a), viết đẳng thức nhận được. Giải thích ý nghĩa của đẳng thức này.
Lời giải chi tiết:
a) \({(1 + x)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}\)
b) Thay \(x = 1\) trong khai triển ở câu a), ta được:
\({2^n} = C_n^0 + C_n^1 + C_n^2 + ... + C_n^n\)
Với \(C_n^k(0 \le k \le n)\) chính là số tập con gồm k phần tử của một tập hợp có n phần tử, thì vế phải là tổng số tập con của tập hợp có n phần tử.
=> Số tập con của tập có n phần tử là: \({2^n}\)
c) Thay \(x = - 1\) trong khai triển ở câu a), ta được:
\(\begin{array}{l}0 = C_n^0 - C_n^1 + C_n^2 + ... + {( - 1)^n}C_n^n{x^n}\\ \Leftrightarrow C_n^0 + C_n^2 + C_n^4 + ... = C_n^1 + C_n^3 + C_n^5 + ...\end{array}\)
Ý nghĩa: Tập hợp có n phần tử có số tập con có chẵn phần tử = số tập con có lẻ phần tử.
Mục 2 của Chuyên đề học tập Toán 10 - Kết nối tri thức thường tập trung vào một chủ đề cụ thể, đòi hỏi học sinh phải nắm vững kiến thức nền tảng và kỹ năng giải quyết vấn đề. Việc giải các bài tập trong mục này không chỉ giúp củng cố lý thuyết mà còn rèn luyện tư duy logic và khả năng áp dụng kiến thức vào thực tế.
Để hỗ trợ học sinh tốt nhất, chúng tôi sẽ phân tích chi tiết từng bài tập trong mục 2 trang 35, 36, bao gồm:
Trong mục 2 trang 35, 36, học sinh có thể gặp các dạng bài tập sau:
Để giúp học sinh hiểu rõ hơn, chúng tôi sẽ cung cấp một ví dụ minh họa chi tiết về cách giải một bài tập cụ thể trong mục 2 trang 35, 36:
Ví dụ: (Nêu rõ bài tập và lời giải chi tiết, kèm theo các hình vẽ minh họa nếu cần thiết).
Để đạt kết quả tốt nhất, học sinh cần lưu ý những điều sau:
Việc giải các bài tập trong mục 2 trang 35, 36 Chuyên đề học tập Toán 10 - Kết nối tri thức là một bước quan trọng trong quá trình học tập môn Toán. Hy vọng rằng với những lời giải chi tiết và phương pháp tiếp cận hiệu quả mà chúng tôi cung cấp, các em học sinh sẽ tự tin hơn và đạt được kết quả tốt nhất.
Để tự học hiệu quả hơn, các em nên:
Công thức | Mô tả |
---|---|
(Công thức 1) | (Mô tả công thức 1) |
(Công thức 2) | (Mô tả công thức 2) |
(Công thức 3) | (Mô tả công thức 3) |