Bài 1.3 trang 14 Chuyên đề học tập Toán 10 – Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng kiến thức về tập hợp và các phép toán trên tập hợp. Bài tập này thường yêu cầu học sinh xác định các tập hợp, tìm phần tử thuộc tập hợp, và thực hiện các phép toán hợp, giao, hiệu của các tập hợp.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.3 trang 14 Chuyên đề học tập Toán 10 – Kết nối tri thức, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Giải các hệ phương trình sau bằng phương pháp Gauss
Đề bài
Giải các hệ phương trình sau bằng phương pháp Gauss
a) \(\left\{ \begin{array}{l}2x - y - z = 2\\x + y = 3\\x - y + z = 2\end{array} \right.\)
b) \(\left\{ \begin{array}{l}3x - y - z = 2\\x + 2y + z = 5\\ - x + y = 2\end{array} \right.\)
c) \(\left\{ \begin{array}{l}x - 3y - z = - 6\\2x - y + 2z = 6\\4x - 7y = - 6\end{array} \right.\)
d) \(\left\{ \begin{array}{l}x - 3y - z = - 6\\2x - y + 2z = 6\\4x - 7y = 3\end{array} \right.\)
e) \(\left\{ \begin{array}{l}3x - y - 7z = 2\\4x - y + z = 11\\ - 5x - y - 9z = - 22\end{array} \right.\)
f) \(\left\{ \begin{array}{l}2x - 3y - 4z = - 2\\5x - y - 2z = 3\\7x - 4y - 6z = 1\end{array} \right.\)
Phương pháp giải - Xem chi tiết
Biến đổi hệ về một hệ đơn giản hơn bằng cách:
+ Nhân hai vế của một PT với một số khác 0
+ Đổi vị trí hai phương trình của hệ
+ Cộng mỗi vế của PT (sau khi nhân) với vế tương ứng của PT khác để được PT có số ẩn ít hơn.
Lời giải chi tiết
a) Đổi chỗ phương trình thứ nhất và phương trình thứ hai ta được:
\(\left\{ \begin{array}{l}x + y = 3\\2x - y - z = 2\\x - y + z = 2\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất với -2 rồi cộng với phương trình thứ hai theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình thứ hai).
\(\left\{ \begin{array}{l}x + y = 3\\ - 3y - z = - 4\\x - y + z = 2\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất với -1 rồi cộng với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình cuối).
\(\left\{ \begin{array}{l}x + y = 3\\ - 3y - z = - 4\\ - 2y + z = - 1\end{array} \right.\)
Cộng phương trình thứ hai với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử z ở phương trình cuối).
\(\left\{ \begin{array}{l}x + y = 3\\ - 3y - z = - 4\\ - 5y = - 5\end{array} \right.\)
Từ phương trình thứ ba ta có \(y = 1\).
Thế vào phương trình thứ hai ta được \( - 3 - z = - 4\) hay \(z = 1\)
Cuối cùng ta có: \(x + 1 = 3\) hay \(x = 2\).
Vậy nghiệm của hệ phương trình là \(\left( {x;{\rm{ }}y;{\rm{ }}z} \right) = \left( {2;1;1} \right).\)
b) Đổi chỗ phương trình thứ nhất và phương trình thứ ba ta được:
\(\left\{ \begin{array}{l} - x + y = 2\\x + 2y + z = 5\\3x - y - z = 2\end{array} \right.\)
Cộng phương trình thứ nhất với phương trình thứ hai theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình thứ hai).
\(\left\{ \begin{array}{l} - x + y = 2\\3y + z = 7\\3x - y - z = 2\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất với 3 rồi cộng với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình cuối).
\(\left\{ \begin{array}{l} - x + y = 2\\3y + z = 7\\2y - z = 8\end{array} \right.\)
Cộng phương trình thứ hai với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử z ở phương trình cuối).
\(\left\{ \begin{array}{l} - x + y = 2\\3y + z = 7\\5y = 15\end{array} \right.\)
Từ phương trình thứ ba ta có \(y = 3\).
Thế vào phương trình thứ hai ta được \(9 + z = 7\) hay \(z = - 2\)
Cuối cùng ta có: \( - x + 3 = 2\) hay \(x = 1\).
Vậy nghiệm của hệ phương trình là \(\left( {x;{\rm{ }}y;{\rm{ }}z} \right) = \left( {1;3; - 2} \right).\)
c) Nhân hai vế của phương trình thứ nhất với -2 rồi cộng với phương trình thứ hai theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình thứ hai).
\(\left\{ \begin{array}{l}x - 3y - z = - 6\\5y + 4z = 18\\4x - 7y = - 6\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất với -4 rồi cộng với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình cuối).
\(\left\{ \begin{array}{l}x - 3y - z = - 6\\5y + 4z = 18\\5y + 4z = 18\end{array} \right.\)
Nhận thấy phương trình thứ hai và thứ ba của hệ giống nhau. Như vậy ta được hệ tương đương dạng hình thang
\(\left\{ \begin{array}{l}x - 3y - z = - 6\\5y + 4z = 18\end{array} \right.\)
Rút z theo y từ phương trình hai của hệ ta được: \(z = \frac{{18 - 5y}}{4}\). Thế vào phương trình thứ nhất ta được \(x - 3y - \frac{{18 - 5y}}{4} = - 6 \Leftrightarrow x = \frac{{12y + 18 - 5y}}{4} - 6 = \frac{{7y - 6}}{4}\)
Vậy hệ phương trình đã cho có vô số nghiệm và tập nghiệm của hệ là \(S = \left\{ {\frac{{7y - 6}}{4};y;\frac{{18 - 5y}}{4}} \right\}\)
d) Nhân hai vế của phương trình thứ nhất với -2 rồi cộng với phương trình thứ hai theo từng vế tương
ứng ta được hệ phương trình (đã khử x ở phương trình thứ hai).
\(\left\{ \begin{array}{l}x - 3y - z = - 6\\5y + 4z = 18\\4x - 7y = 3\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất với -4 rồi cộng với phương trình thứ ba theo từng vế tương
ứng ta được hệ phương trình (đã khử x ở phương trình cuối).
\(\left\{ \begin{array}{l}x - 3y - z = - 6\\5y + 4z = 18\\5y + 4z = 27\end{array} \right.\)
Từ hai phương trình cuối, suy ra 18 = 27, điều này vô lí.
Vậy hệ ban đầu vô nghiệm
e)
Trừ phương trình thứ hai cho phương trình thứ nhất theo từng vế tương ứng ta được hệ phương trình
\(\left\{ \begin{array}{l}x + 8z = 9\\4x - y + z = 11\\ - 5x - y - 9z = - 22\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất với -4 rồi cộng với phương trình thứ hai theo từng vế tương
ứng ta được hệ phương trình (đã khử x ở phương trình thứ hai).
\(\left\{ \begin{array}{l}x + 8z = 9\\ - y - 31z = - 25\\ - 5x - y - 9z = - 22\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất với 5 rồi cộng với phương trình thứ ba theo từng vế tương
ứng ta được hệ phương trình (đã khử x ở phương trình cuối).
\(\left\{ \begin{array}{l}x + 8z = 9\\ - y - 31z = - 25\\ - y + 31z = 23\end{array} \right.\)
Cộng phương trình thứ hai với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử z ở phương trình cuối)
\(\left\{ \begin{array}{l}x + 8z = 9\\ - y - 31z = - 25\\ - 2y = - 2\end{array} \right.\)
Từ phương trình thứ ba ta có \(y = 1\).
Thế vào phương trình thứ hai ta được \( - 1 - 31z = - 25\) hay \(z = \frac{{24}}{{31}}\)
Cuối cùng ta có: \(x + 8.\frac{{24}}{{31}} = 9\) hay \(x = \frac{{87}}{{31}}\).
Vậy nghiệm của hệ phương trình là \(\left( {x;{\rm{ }}y;{\rm{ }}z} \right) = \left( {\frac{{87}}{{31}};1;\frac{{24}}{{31}}} \right).\)
f) Cộng phương trình thứ nhất với phương trình thứ hai theo từng vế tương ứng ta được hệ phương trình
\(\left\{ \begin{array}{l}2x - 3y - 4z = - 2\\7x - 4y - 6z = 1\\7x - 4y - 6z = 1\end{array} \right.\)
Nhận thấy phương trình thứ hai và thứ ba của hệ giống nhau. Như vậy ta được hệ tương đương
\(\left\{ \begin{array}{l}2x - 3y - 4z = - 2\\7x - 4y - 6z = 1\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất với -7 rồi cộng với 2 lần phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình cuối).
\(\left\{ \begin{array}{l}2x - 3y - 4z = - 2\\13y + 16z = 16\end{array} \right.\)
Rút z theo y từ phương trình hai của hệ ta được: \(z = \frac{{16 - 13y}}{{16}}\). Thế vào phương trình thứ nhất ta được
\(2x - 3y - 4.\frac{{16 - 13y}}{{16}} = - 2 \Leftrightarrow 2x = 3y + \frac{{16 - 13y}}{4} - 2 = \frac{{8 - y}}{4}\)
Vậy hệ phương trình đã cho có vô số nghiệm và tập nghiệm của hệ là \(S = \left\{ {\frac{{8 - y}}{4};y;\frac{{16 - 13y}}{{16}}} \right\}\)
Bài 1.3 trang 14 Chuyên đề học tập Toán 10 – Kết nối tri thức thuộc chương trình học Toán 10, tập trung vào việc củng cố kiến thức về tập hợp và các phép toán cơ bản. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm sau:
Nội dung bài tập 1.3 trang 14 Chuyên đề học tập Toán 10 – Kết nối tri thức thường bao gồm:
(Ở đây sẽ là lời giải chi tiết cho bài tập 1.3, bao gồm các bước giải, giải thích rõ ràng và ví dụ minh họa. Ví dụ, nếu bài tập yêu cầu tìm A ∪ B, lời giải sẽ trình bày rõ cách xác định các phần tử thuộc A ∪ B và kết quả cuối cùng.)
Ví dụ minh họa:
Giả sử A = {1, 2, 3} và B = {2, 4, 5}. Khi đó:
Để giải các bài tập về tập hợp một cách hiệu quả, bạn nên:
Để củng cố kiến thức về tập hợp, bạn có thể làm thêm các bài tập tương tự sau:
Giaitoan.edu.vn hy vọng rằng lời giải chi tiết và hướng dẫn giải bài 1.3 trang 14 Chuyên đề học tập Toán 10 – Kết nối tri thức sẽ giúp các em học sinh hiểu rõ hơn về kiến thức tập hợp và tự tin làm bài tập. Chúc các em học tốt!
Phép toán | Ký hiệu | Mô tả |
---|---|---|
Hợp | ∪ | Tập hợp chứa tất cả các phần tử thuộc A hoặc B (hoặc cả hai). |
Giao | ∩ | Tập hợp chứa tất cả các phần tử thuộc cả A và B. |
Hiệu | \ | Tập hợp chứa tất cả các phần tử thuộc A nhưng không thuộc B. |