Bài 3.1 trang 44 Chuyên đề học tập Toán 10 thuộc chương trình Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3.1 này, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ quá trình học tập của các em.
Cho elip (frac{{{x^2}}}{{12}} + frac{{{y^2}}}{4} = 1)
Đề bài
Cho elip \(\frac{{{x^2}}}{{12}} + \frac{{{y^2}}}{4} = 1\)
a) Xác định các đỉnh và độ dài các trục của elip
b) Xác định tâm sai và các đường chuẩn của elip
c) Tính bán kính qua tiêu của điểm M thuộc elip, biết điểm M có hoành độ bằng -3.
Phương pháp giải - Xem chi tiết
Cho elip \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)
a)
+ 4 đỉnh: \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right),\)\({B_1}\left( {0; - b} \right),{B_2}\left( {0;b} \right).\)
+ Độ dài trục lớn: 2a, độ dài trục nhỏ: 2b.
b) \(c = \sqrt {{a^2} - {b^2}} \)
+ Tâm sai của elip: \(e = \frac{c}{a}\)
+ Đường chuẩn: \({\Delta _1}:x = - \frac{a}{e}\) và \({\Delta _2}:x = \frac{a}{e}\).
c) Bán kính qua tiêu của M (x; y): \(M{F_1} = a + ex,\;M{F_2} = a - ex.\)
Lời giải chi tiết
Ta có phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{12}} + \frac{{{y^2}}}{4} = 1\).
\( \Rightarrow a = 2\sqrt 3 ,b = 2,c = \sqrt {{a^2} - {b^2}} = 2\sqrt 2 \)
a)
+ 4 đỉnh: \({A_1}\left( { - 2\sqrt 3 ;0} \right),{A_2}\left( {2\sqrt 3 ;0} \right),\)\({B_1}\left( {0; - 2} \right),{B_2}\left( {0;2} \right).\)
+ Độ dài trục lớn: \(2a = 4\sqrt 3 \), độ dài trục nhỏ: \(2b = 4.\)
b)
+ Tâm sai của elip: \(e = \frac{{2\sqrt 2 }}{{2\sqrt 3 }} = \frac{{\sqrt 6 }}{3}\)
+ Đường chuẩn: \({\Delta _1}:x = - \frac{{2\sqrt 3 }}{{\frac{{\sqrt 6 }}{3}}} = - 3\sqrt 2 \) và \({\Delta _2}:x = 3\sqrt 2 \).
c) Bán kính qua tiêu của M (x; y):
\(M{F_1} = 2\sqrt 3 + \frac{{\sqrt 6 }}{3}.( - 3) = 2\sqrt 3 - \sqrt 6 ,\;M{F_2} = 2\sqrt 3 - \frac{{\sqrt 6 }}{3}.( - 3) = 2\sqrt 3 + \sqrt 6 .\)
Bài tập 3.1 trang 44 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết các bài toán liên quan đến hình học phẳng. Để giải bài tập này một cách hiệu quả, trước hết chúng ta cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Nội dung bài tập 3.1: Bài tập thường yêu cầu chứng minh một đẳng thức vectơ hoặc tìm một điểm thỏa mãn một điều kiện nào đó liên quan đến vectơ. Để giải quyết bài tập này, chúng ta cần:
(Ở đây sẽ là lời giải chi tiết của bài 3.1, bao gồm các bước giải, giải thích rõ ràng và hình vẽ minh họa nếu cần thiết. Ví dụ:)
Ví dụ: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2.
Lời giải:
Ta có: overrightarrow{AB} +overrightarrow{AC} = 2overrightarrow{AM} (theo quy tắc trung điểm). Do đó, overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2. Vậy, đẳng thức được chứng minh.
Ngoài bài tập 3.1, Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống còn có nhiều bài tập tương tự khác. Để giải quyết các bài tập này, chúng ta có thể áp dụng các phương pháp sau:
Lưu ý khi giải bài tập về vectơ:
Để học tập và ôn luyện kiến thức về vectơ, các em có thể tham khảo các tài liệu sau:
Hy vọng rằng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ tự tin giải bài tập 3.1 trang 44 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống và đạt kết quả tốt trong môn Toán.