Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 35 Chuyên đề học tập Toán 12 - Cánh diều

Giải bài 2 trang 35 Chuyên đề học tập Toán 12 - Cánh diều

Giải bài 2 trang 35 Chuyên đề học tập Toán 12 - Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 35 Chuyên đề học tập Toán 12 - Cánh diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách nhanh chóng và hiệu quả.

Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.

Hình 4 minh hoạ một màn hình (BC) có chiều cao 1,4 m được đặt thẳng đứng và mép dưới của màn hình cách mặt đất một khoảng (BA = 1,8)m. Một chiếc đèn quan sát màn hình được đặt ở vị trí (O) trên mặt đất. Hãy tính khoảng cách (AO) sao cho góc quan sát (BOC) là lớn nhất.

Đề bài

Hình 4 minh hoạ một màn hình \(BC\) có chiều cao 1,4 m được đặt thẳng đứng và mép dưới của màn hình cách mặt đất một khoảng \(BA = 1,8\)m. Một chiếc đèn quan sát màn hình được đặt ở vị trí \(O\) trên mặt đất. Hãy tính khoảng cách \(AO\) sao cho góc quan sát \(BOC\) là lớn nhất.

Giải bài 2 trang 35 Chuyên đề học tập Toán 12 - Cánh diều 1

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 35 Chuyên đề học tập Toán 12 - Cánh diều 2

+) Do góc \(\widehat {BOC}\)là góc của tam giác nên \({0^0} < \widehat {BOC} < {180^0}\)khi đó \(\widehat {BOC}\)càng lớn thì \(\tan \widehat {BOC}\)cũng càng lớn nên ta sẽ đưa về tìm AO để \(\tan \widehat {BOC}\)lớn nhất.

+) Ta cần biểu thị \(\tan \widehat {BOC}\)qua các đoạn thẳng đã và qua AO. Sử dụng công thức:

\(\tan (a - b) = \frac{{\tan a - \tan b}}{{1 + \tan a.\tan b}}\); trong đó \(\widehat {BOC} = \widehat {AOC} - \widehat {AOB}\)

+) Ta được \(\tan \widehat {BOC}\)được tính bằng 1 biểu thức chứa \(x\). Khi đó ta xét hàm số tương ứng và tìm giá trị lớn nhất của nó.

Lời giải chi tiết

Để góc quan sát \(\widehat {BOC}\) lớn nhất thì \(\tan \widehat {BOC}\) là lớn nhất.

Giả sử \(AO = x\) (m) \((x > 0).\)

Ta có \(\tan \widehat {BOC} = \tan (\widehat {AOC} - \widehat {AOB}) = \frac{{\tan \widehat {AOC} - \tan \widehat {AOB}}}{{1 + \tan \widehat {AOC}.\tan \widehat {AOB}}}\)

\(\tan \widehat {BOC} = \frac{{\frac{{AC}}{{AO}} - \frac{{AB}}{{AO}}}}{{1 + \frac{{AC}}{{AO}}.\frac{{AB}}{{AO}}}} = \frac{{\frac{{1,4}}{x}}}{{1 + \frac{{1,8 + 1,4}}{x}.\frac{{1,8}}{x}}} = \frac{{1,4x}}{{{x^2} + 5,76}}.\)

Xét hàm số \(f(x) = \frac{{1,4x}}{{{x^2} + 5,76}},\) \(x \in (0; + \infty ).\)

Ta có \(f'(x) = \frac{{1,4({x^2} + 5,76) - 1,4x.2x}}{{{{\left( {{x^2} + 5,76} \right)}^2}}} = \frac{{ - 1,4{x^2} + 8,064}}{{{{\left( {{x^2} + 5,76} \right)}^2}}}.\)

Do đó \(f'(x) = 0 \Leftrightarrow x = 2,4\) (do \(x > 0\)).

Bảng biến thiên của hàm số:

Giải bài 2 trang 35 Chuyên đề học tập Toán 12 - Cánh diều 3

Căn cứ vào bảng biến thiên ta có \(\mathop {\max }\limits_{(0; + \infty )} f(x) = f(2,4) = \frac{7}{{24}}\) tại \(x = 2,4.\)

Vậy để góc quan sát \(\widehat {BOC}\) lớn nhất thì khoảng cách \(AO = 2,4\) mét.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 2 trang 35 Chuyên đề học tập Toán 12 - Cánh diều đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng học toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 2 trang 35 Chuyên đề học tập Toán 12 - Cánh diều: Tổng quan

Bài 2 trang 35 Chuyên đề học tập Toán 12 - Cánh diều thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập

Bài 2 trang 35 thường bao gồm các dạng bài tập sau:

  • Bài tập về tính đạo hàm: Yêu cầu tính đạo hàm của hàm số cho trước.
  • Bài tập về ứng dụng đạo hàm: Tìm cực trị, khoảng đơn điệu, giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
  • Bài tập về phương trình, bất phương trình: Giải phương trình, bất phương trình sử dụng đạo hàm.
  • Bài tập về tối ưu hóa: Giải các bài toán tối ưu hóa trong thực tế.

Phương pháp giải bài tập

Để giải bài tập hiệu quả, các em cần nắm vững các bước sau:

  1. Xác định đúng công thức đạo hàm: Lựa chọn công thức đạo hàm phù hợp với từng loại hàm số.
  2. Tính đạo hàm một cách chính xác: Thực hiện các phép tính đạo hàm cẩn thận, tránh sai sót.
  3. Phân tích đạo hàm: Nghiên cứu dấu của đạo hàm để xác định khoảng đơn điệu, cực trị của hàm số.
  4. Vận dụng kiến thức vào bài toán: Áp dụng các kiến thức đã học để giải quyết bài toán một cách hiệu quả.

Ví dụ minh họa

Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Tìm cực trị của hàm số.

Giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
  3. Xác định loại cực trị:
    • Với x < 0, y' > 0, hàm số đồng biến.
    • Với 0 < x < 2, y' < 0, hàm số nghịch biến.
    • Với x > 2, y' > 0, hàm số đồng biến.
  4. Kết luận: Hàm số đạt cực đại tại x = 0, ymax = 2 và đạt cực tiểu tại x = 2, ymin = -2.

Lưu ý khi giải bài tập

Các em cần lưu ý những điều sau khi giải bài tập:

  • Đọc kỹ đề bài để hiểu rõ yêu cầu.
  • Sử dụng đúng công thức đạo hàm.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nắm vững kiến thức.

Tài liệu tham khảo

Để học tốt môn Toán 12, các em có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 - Cánh diều
  • Sách bài tập Toán 12 - Cánh diều
  • Các trang web học toán online uy tín như giaitoan.edu.vn

Kết luận

Hy vọng với những hướng dẫn chi tiết trên, các em sẽ tự tin giải quyết bài 2 trang 35 Chuyên đề học tập Toán 12 - Cánh diều một cách hiệu quả. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 12