Chào mừng các em học sinh đến với lời giải chi tiết bài 7 trang 19 Chuyên đề học tập Toán 12 - Cánh diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách nhanh chóng và hiệu quả.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.
Giả sử tỉ lệ người dân tham gia giao thông ở Hà Nội có hiểu biết cơ bản về Luật giao thông đường bộ là 80%. Chọn ngẫu nhiên (có hoàn lại) 20 người đang tham gia giao thông trên đường. Hãy tính xác suất của các tình huống sau: a) Có 15 người hiểu biết cơ bản về Luật giao thông đường bộ. b) Có 8 người không hiểu biểu cơ bản về Luật giao thông đường bộ. c) Số người không hiểu biết cơ bản về Luật giao thông đường bộ có xác suất lớn nhất.
Đề bài
Giả sử tỉ lệ người dân tham gia giao thông ở Hà Nội có hiểu biết cơ bản về Luật giao thông đường bộ là 80%. Chọn ngẫu nhiên (có hoàn lại) 20 người đang tham gia giao thông trên đường. Hãy tính xác suất của các tình huống sau:
a) Có 15 người hiểu biết cơ bản về Luật giao thông đường bộ.
b) Có 8 người không hiểu biểu cơ bản về Luật giao thông đường bộ.
c) Số người không hiểu biết cơ bản về Luật giao thông đường bộ có xác suất lớn nhất.
Phương pháp giải - Xem chi tiết
Lời giải chi tiết
a) Gọi \(X\) là số người hiểu biết cơ bản về Luật giao thông đường bộ. Khi đó \(X\) là biến ngẫu nhiên rời rạc có phân bố nhị thức với tham số \(n = 20;\) \(p = 80\% = 0,8.\)
Ta có \(P(X = 15) = C_{20}^{15}.{(0,8)^{15}}.{(1 - 0,8)^{20 - 15}} \approx 0,1746.\)
Vậy xác suất có 15 người trong 20 người hiểu biết cơ bản về Luật giao thông đường bộ là 0,1746.
b) Gọi \(Y\) là số người không hiểu biết cơ bản về Luật giao thông đường bộ. Khi đó \(Y\) là biến ngẫu nhiên rời rạc có phân phối nhị thức với tham số \(n = 20;\) \(p = 1 - 0,8 = 0,2.\)
\(P(Y = 8) = C_{20}^8.{(0,2)^8}.{(1 - 0,2)^{20 - 8}} \approx 0,0222.\)
Vậy xác suất có 8 người không hiểu biết cơ bản về Luật giao thông đường bộ là 0,0222.
c) \(P(Y = 0) = C_{20}^0.{(0,2)^0}.{(1 - 0,2)^{20 - 0}} \approx 0,0115.\)
\(P(Y = 1) = C_{20}^1.{(0,2)^1}.{(1 - 0,2)^{20 - 1}} \approx 0,0576.\)
\(P(Y = 2) = C_{20}^2.{(0,2)^2}.{(1 - 0,2)^{20 - 2}} \approx 0,1369.\)
\(P(Y = 3) = C_{20}^3.{(0,2)^3}.{(1 - 0,2)^{20 - 3}} \approx 0,2054.\)
\(P(Y = 4) = C_{20}^4.{(0,2)^4}.{(1 - 0,2)^{20 - 4}} \approx 0,2182.\)
\(P(Y = 5) = C_{20}^5.{(0,2)^5}.{(1 - 0,2)^{20 - 5}} \approx 0,1746.\)
\(P(Y = 6) = C_{20}^6.{(0,2)^6}.{(1 - 0,2)^{20 - 6}} \approx 0,1091.\)
\(P(Y = 7) = C_{20}^7.{(0,2)^7}.{(1 - 0,2)^{20 - 7}} \approx 0,0545.\)
\(P(Y = 8) = C_{20}^8.{(0,2)^8}.{(1 - 0,2)^{20 - 8}} \approx 0,0222.\)
\(P(Y = 9) = C_{20}^9.{(0,2)^9}.{(1 - 0,2)^{20 - 9}} \approx 0,0074.\)
\(P(Y = 10) = C_{20}^{10}.{(0,2)^{10}}.{(1 - 0,2)^{20 - 10}} \approx 0,002.\)
\(P(Y = 11) = C_{20}^{11}.{(0,2)^{11}}.{(1 - 0,2)^{20 - 11}} \approx 0,00046.\)
\(P(Y = 12) = C_{20}^{12}.{(0,2)^{12}}.{(1 - 0,2)^{20 - 12}} \approx 0,000087.\)
\(P(Y = 13) = C_{20}^{13}.{(0,2)^{13}}.{(1 - 0,2)^{20 - 13}} \approx 0,000013.\)
\(P(Y = 14) = C_{20}^{14}.{(0,2)^{14}}.{(1 - 0,2)^{20 - 14}} \approx 0,0000017.\)
\(P(Y = 15) = C_{20}^{15}.{(0,2)^{15}}.{(1 - 0,2)^{20 - 15}} \approx 0,00000017.\)
\(P(Y = 16) = C_{20}^{16}.{(0,2)^{16}}.{(1 - 0,2)^{20 - 16}} \approx 0,000000013.\)
\(P(Y = 17) = C_{20}^{17}.{(0,2)^{17}}.{(1 - 0,2)^{20 - 17}} \approx {7,7.10^{ - 10}}.\)
\(P(Y = 18) = C_{20}^{18}.{(0,2)^{18}}.{(1 - 0,2)^{20 - 18}} \approx {3,2.10^{ - 11}}.\)
\(P(Y = 19) = C_{20}^{19}.{(0,2)^{19}}.{(1 - 0,2)^{20 - 19}} \approx {8,4.10^{ - 13}}.\)
\(P(Y = 20) = C_{20}^{20}.{(0,2)^{20}}.{(1 - 0,2)^{20 - 20}} \approx {10^{ - 14}}.\)
Vậy 4 người không hiểu biết cơ bản về Luật giao thông đường bộ có xác suất lớn nhất.
Bài 7 trang 19 Chuyên đề học tập Toán 12 - Cánh diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 7 bao gồm các dạng bài tập sau:
Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x).
Lời giải:
Áp dụng công thức đạo hàm của hàm số lũy thừa, ta có:
f'(x) = 3x2 - 6x
Cho hàm số g(x) = sin(2x). Tính g'(x).
Lời giải:
Áp dụng công thức đạo hàm của hàm số lượng giác và quy tắc chuỗi, ta có:
g'(x) = cos(2x) * 2 = 2cos(2x)
Tìm cực trị của hàm số h(x) = x4 - 4x2 + 3.
Lời giải:
Tính đạo hàm bậc nhất: h'(x) = 4x3 - 8x
Giải phương trình h'(x) = 0: 4x3 - 8x = 0 => x(x2 - 2) = 0 => x = 0, x = √2, x = -√2
Tính đạo hàm bậc hai: h''(x) = 12x2 - 8
Xét dấu h''(x) tại các điểm cực trị:
Để giải các bài tập về đạo hàm một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo thêm các bài tập tương tự trong sách giáo khoa và các tài liệu tham khảo khác. Ngoài ra, các em cũng có thể tìm kiếm các bài giảng online về đạo hàm để hiểu rõ hơn về lý thuyết và phương pháp giải bài tập.
Bài 7 trang 19 Chuyên đề học tập Toán 12 - Cánh diều là một bài tập quan trọng giúp các em củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải bài tập. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong quá trình học tập.