Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 12 Chuyên đề học tập Toán 12 - Cánh diều

Giải bài 6 trang 12 Chuyên đề học tập Toán 12 - Cánh diều

Giải bài 6 trang 12 Chuyên đề học tập Toán 12 - Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 12 Chuyên đề học tập Toán 12 - Cánh diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả.

Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.

Trong lô hàng 10 chiếc máy tính mới nhập về có 3 chiếc bị lỗi, 7 chiếc đạt chuẩn. Chọn ngẫu nhiên đồng thời 4 chiếc máy tính trong lô hàng đó. Gọi X là số máy tính bị lỗi trong 4 chiếc được chọn ra. a) Lập bảng phân bố xác suất của biến ngẫu nhiên rời rạc X. b) Khi chọn ra 4 chiếc máy tính thì tình huống mấy chiếc bị lỗi có khả năng xảy ra cao nhất? c) Tính xác suất để trong 4 chiếc máy tính được chọn ra có ít nhất 1 chiếc bị lỗi. d) Tính kì vọng, phương sai và độ lệch chuẩn của X.

Đề bài

Trong lô hàng 10 chiếc máy tính mới nhập về có 3 chiếc bị lỗi, 7 chiếc đạt chuẩn. Chọn ngẫu nhiên đồng thời 4 chiếc máy tính trong lô hàng đó. Gọi X là số máy tính bị lỗi trong 4 chiếc được chọn ra.

a) Lập bảng phân bố xác suất của biến ngẫu nhiên rời rạc X.

b) Khi chọn ra 4 chiếc máy tính thì tình huống mấy chiếc bị lỗi có khả năng xảy ra cao nhất?

c) Tính xác suất để trong 4 chiếc máy tính được chọn ra có ít nhất 1 chiếc bị lỗi.

d) Tính kì vọng, phương sai và độ lệch chuẩn của X.

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 12 Chuyên đề học tập Toán 12 - Cánh diều 1

a) X là số máy tính bị lỗi trong 4 chiếc được chọn ra, tức là có 0,1,2,3 cái máy tính bị lỗi. Ta tính được không gian mẫu, tính được số cách chọn 0,1,2,3 cái máy tính lỗi trong 4 máy tính từ đó tính được xác suất của mỗi lần được lấy ra 0,1,2,3 máy tính lỗi.

b) Dựa vào xác suất đưa ra kết luận được số chiếc bị lỗi có khả năng xảy ra cao nhất( xác suất lớn nhất).

c) Gọi \(P(A)\) là xác suất trong 4 chiếc chọn ra không có chiếc nào bị lỗi từ đó xác suất có ít nhất 1 chiếc bị lỗi là \(1 - P(A)\).

d) Để tính kì vọng, phương sai và độ lệch chuẩn áp dụng các công thức sau

\(\begin{array}{l}E(X) = {x_1}{p_1} + {x_2}{p_2} + ... + {x_n}{p_n}\\V(X) = {({x_1} - \mu )^2}{p_1} + {({x_2} - \mu )^2}{p_2} + ... + {({x_n} - \mu )^2}{p_n}\\\sigma (X) = \sqrt {V(X)} \end{array}\)

Lời giải chi tiết

a) X là biến ngẫu nhiên rời rạc và có giá trị thuộc tập \(\left\{ {0;1;2;3} \right\}\)

Ta có \(n(\Omega ) = C_{10}^4 = 210.\)

+ Biến cố \(X = 0\) là biến cố :”Không có máy tính nào bị lỗi.”

Suy ra \(n(X = 0) = C_7^4 = 35 \Rightarrow P(X = 0) = \frac{{35}}{{210}}.\)

+ Biến cố \(X = 1\) là biến cố :” Có 1 chiếc máy bị lỗi trong 4 chiếc được chọn.”

Suy ra \(n(X = 1) = C_3^1.C_7^3 = 105 \Rightarrow P(X = 1) = \frac{{105}}{{210}}.\)

+ Biến cố \(X = 2\) là biến cố :” Có 2 chiếc máy bị lỗi trong 4 chiếc được chọn.”

Suy ra \(n(X = 2) = C_3^2.C_7^2 = 63 \Rightarrow P(X = 2) = \frac{{63}}{{210}}.\)

+ Biến cố \(X = 3\) là biến cố :” Có 3 chiếc máy bị lỗi trong 4 chiếc được chọn.”

Suy ra \(n(X = 3) = C_3^3.C_7^1 = 7 \Rightarrow P(X = 3) = \frac{7}{{210}}.\)

Bảng phân bố xác suất của X là:

Giải bài 6 trang 12 Chuyên đề học tập Toán 12 - Cánh diều 2

b) Khi chọn ra 4 chiếc máy tính thì tình huống 1 máy tính bị lỗi có khả năng xảy ra cao nhất.

c) Gọi A là biến cố:” Trong 4 chiếc máy tính được chọn ra không có chiếc nào bị lỗi.”

Khi đó \(P(A) = P(X = 0) = \frac{{35}}{{210}}\)

Do đó xác suất để trong 4 chiếc máy tính được chọn ra có ít nhất 1 chiếc bị lỗi là:

\(P = 1 - P(X = 0) = 1 - \frac{{35}}{{210}} = \frac{5}{6}\)

d) Ta có:

 \(\begin{array}{l}E(X) = 0.\frac{{35}}{{210}} + 1.\frac{{105}}{{210}} + 2.\frac{{63}}{{210}} + 3.\frac{7}{{210}} = 1,2\\V(X) = {(0 - 1,2)^2}.\frac{{35}}{{210}} + {(1 - 1,2)^2}.\frac{{105}}{{210}} + {(2 - 1,2)^2}.\frac{{63}}{{210}} + {(3 - 1,2)^2}.\frac{7}{{210}} = 0,56\\\partial (X) = \sqrt {0,56} \approx 0,75\end{array}\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 6 trang 12 Chuyên đề học tập Toán 12 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng soạn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 6 trang 12 Chuyên đề học tập Toán 12 - Cánh diều: Tổng quan

Bài 6 trang 12 Chuyên đề học tập Toán 12 - Cánh diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các khái niệm và kỹ năng đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và phương pháp giải toán đã được trình bày trong chuyên đề để giải quyết các bài toán cụ thể.

Nội dung chi tiết bài 6 trang 12

Bài 6 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Bài tập về giới hạn của hàm số.
  • Dạng 2: Bài tập về đạo hàm và ứng dụng của đạo hàm.
  • Dạng 3: Bài tập về tích phân và ứng dụng của tích phân.
  • Dạng 4: Bài tập về số phức.
  • Dạng 5: Bài tập về hình học không gian.

Phương pháp giải bài tập

Để giải bài tập trong bài 6 trang 12 Chuyên đề học tập Toán 12 - Cánh diều một cách hiệu quả, học sinh cần:

  1. Nắm vững kiến thức lý thuyết: Hiểu rõ các khái niệm, định lý và công thức liên quan đến từng dạng bài tập.
  2. Phân tích đề bài: Xác định rõ yêu cầu của đề bài, các dữ kiện đã cho và các đại lượng cần tìm.
  3. Lựa chọn phương pháp giải phù hợp: Dựa vào đặc điểm của bài toán để lựa chọn phương pháp giải tối ưu.
  4. Thực hiện các phép tính chính xác: Tránh sai sót trong quá trình tính toán.
  5. Kiểm tra lại kết quả: Đảm bảo kết quả cuối cùng là hợp lý và phù hợp với yêu cầu của đề bài.

Ví dụ minh họa

Ví dụ 1: Tính giới hạn lim_{x o 2} rac{x^2 - 4}{x - 2}

Lời giải:

lim_{x o 2} rac{x^2 - 4}{x - 2} = lim_{x o 2} rac{(x - 2)(x + 2)}{x - 2} = lim_{x o 2} (x + 2) = 4

Ví dụ 2: Tìm đạo hàm của hàm số y = x^3 + 2x^2 - 5x + 1

Lời giải:

y' = 3x^2 + 4x - 5

Lưu ý khi giải bài tập

Trong quá trình giải bài tập, học sinh cần lưu ý:

  • Đọc kỹ đề bài và hiểu rõ yêu cầu.
  • Sử dụng đúng các công thức và định lý.
  • Kiểm tra lại kết quả trước khi kết luận.
  • Tham khảo các tài liệu học tập và tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè khi gặp khó khăn.

Tài liệu tham khảo

Để học tập và ôn luyện hiệu quả, học sinh có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 - Cánh diều
  • Sách bài tập Toán 12 - Cánh diều
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng trên YouTube

Kết luận

Bài 6 trang 12 Chuyên đề học tập Toán 12 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, các em sẽ tự tin hơn khi giải quyết các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 12