Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 49 Chuyên đề học tập Toán 11 Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Giả sử chi phí di chuyển giữa các địa điểm được mô tả ở Hình 33 (đơn vị: nghìn đồng).
Đề bài
Giả sử chi phí di chuyển giữa các địa điểm được mô tả ở Hình 33 (đơn vị: nghìn đồng). Ta nên chọn theo chu trình nào đi qua tất cả các địa điểm để tổng chi phí di chuyển là thấp nhất? Chi phí thấp nhất đó bằng bao nhiêu?
Phương pháp giải - Xem chi tiết
Bước 1. Chọn một đỉnh bắt đầu, ta gọi là đỉnh V.
Bước 2. Xuất phát từ đỉnh hiện hành, chọn cạnh có độ dài nhỏ nhất nối đến một trong các đỉnh chưa đến. Đánh dấu đỉnh cuối của cạnh vừa chọn.
Bước 3. Xuất phát từ đỉnh vừa đánh dấu, nếu còn đỉnh chưa đến thì quay lại bước 2.
Bước 4. Quay lại đỉnh V.
Lời giải chi tiết
Dễ thấy đồ thị Hình 33 có chu trình Hamilton.
+) Sử dụng thuật toán láng giềng gần nhất đối với đỉnh xuất phát A, ta có:
Từ A, đỉnh gần nhất là B, AB = 20 nghìn đồng;
Từ B, đỉnh chưa đến gần nhất là C, BC = 30 nghìn đồng;
Từ C, đỉnh chưa đến gần nhất là D, CD = 12 nghìn đồng;
Đến đây không còn đỉnh chưa đến, vì vậy quay về A, DA = 35 nghìn đồng.
Tổng chi phí di chuyển theo chu trình ABCDA là: 20 + 30 + 12 + 35 = 97 (nghìn đồng).
Tương tự bắt đầu với những đỉnh khác, ta có bảng sau:
Vậy có ba chu trình ABCDA, BADCB, DCBAD thỏa mãn đề bài và chi phí thấp nhất là 97 nghìn đồng.
Bài 3 trang 49 Chuyên đề học tập Toán 11 Cánh diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về hàm số, đồ thị hàm số và các phép biến đổi hàm số để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phân tích, suy luận và áp dụng các công thức, định lý đã học để tìm ra lời giải chính xác.
Bài 3 trang 49 thường bao gồm các dạng bài tập sau:
Để giải bài 3 trang 49 Chuyên đề học tập Toán 11 Cánh diều hiệu quả, bạn có thể áp dụng các phương pháp sau:
Bài toán: Cho hàm số y = x2 - 4x + 3. Tìm tập xác định và tập giá trị của hàm số.
Lời giải:
Khi giải bài tập về hàm số, bạn cần chú ý đến các yếu tố sau:
Bài 3 trang 49 Chuyên đề học tập Toán 11 Cánh diều là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số. Hy vọng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này. Chúc bạn học tập tốt!
Dạng bài tập | Phương pháp giải |
---|---|
Xác định tập xác định | Tìm điều kiện để hàm số có nghĩa |
Tìm tập giá trị | Sử dụng công thức tính cực trị hoặc khảo sát hàm số |
Khảo sát sự biến thiên | Tính đạo hàm, tìm cực trị, xét dấu đạo hàm |