Chào mừng các em học sinh đến với lời giải chi tiết bài 9 trang 33 Chuyên đề học tập Toán 11 Cánh diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em hiểu rõ kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Chứng minh rằng nếu phép đồng dạng F biến tam giác ABC thành tam giác A'B'C' thì F biến trọng tâm
Đề bài
Chứng minh rằng nếu phép đồng dạng F biến tam giác ABC thành tam giác A'B'C' thì F biến trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC thành trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác A'B'C'.
Phương pháp giải - Xem chi tiết
Phép biến hình F biến 2 điểm M, N bất kì thành 2 điểm M’, N’ sao cho \(M'N' = kMN\) với k là số thực dương cho trước, gọi là phép đồng dạng tỉ số k.
Lời giải chi tiết
+) Gọi D là trung điểm của đoạn thẳng BC thì phép đồng dạng F biến điểm D thành trung điểm D' của đoạn thẳng B'C' và vì thế trung tuyến AD của tam giác ABC biến thành trung tuyến A'D' của tam giác A'B'C'. Đối với hai trung tuyến còn lại cũng vậy. Vì trọng tâm tam giác là giao điểm của các đường trung tuyến nên trọng tâm tam giác ABC biến thành trọng tâm tam giác A'B'C'.
+) Gọi AH là đường cao của tam giác ABC (H ∈ BC). Khi đó phép đồng dạng F biến đường thẳng AH thành đường thẳng A'H'. Vì AH ⊥ BC nên A'H' ⊥ B'C', nói cách khác A'H' là đường cao của tam giác A'B'C'. Đối với các đường cao khác cũng thế. Vì trực tâm tam giác là giao điểm của các đường cao nên trực tâm tam giác ABC biến thành trực tâm tam giác A'B'C'.
+) Gọi O là tâm đường tròn ngoại tiếp của tam giác ABC thì OA = OB = OC nên nếu điểm O biến thành điểm O' thì O'A' = O'B' = O'C' = kOA = kOB = kOC, do đó O' là tâm đường tròn ngoại tiếp tam giác A'B'C'.
Bài 9 trang 33 Chuyên đề học tập Toán 11 Cánh diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về hàm số, đồ thị hàm số và các phép biến đổi hàm số để giải quyết các bài toán cụ thể. Bài tập này thường yêu cầu học sinh phải nắm vững các khái niệm cơ bản, hiểu rõ tính chất của hàm số và có khả năng phân tích, suy luận logic.
Bài 9 trang 33 thường bao gồm các dạng bài tập sau:
Để giải bài 9 trang 33 Chuyên đề học tập Toán 11 Cánh diều hiệu quả, học sinh cần:
Bài tập: Xét hàm số f(x) = x2 - 4x + 3. Tìm tập xác định và tập giá trị của hàm số.
Giải:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, học sinh có thể tham khảo thêm các bài tập tương tự trong sách giáo khoa, sách bài tập và các trang web học toán online. Việc luyện tập thường xuyên sẽ giúp học sinh nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Bài 9 trang 33 Chuyên đề học tập Toán 11 Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số và rèn luyện kỹ năng giải bài tập. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, các em học sinh sẽ giải quyết bài tập một cách hiệu quả và đạt kết quả tốt nhất.