Logo Header
  1. Môn Toán
  2. Định nghĩa tỉ lệ nghịch

Định nghĩa tỉ lệ nghịch

Định nghĩa tỉ lệ nghịch là gì?

Trong toán học, hai đại lượng tỉ lệ nghịch là hai đại lượng mà khi đại lượng này tăng lên thì đại lượng kia giảm xuống và ngược lại, với một hệ số tỉ lệ không đổi. Đây là một khái niệm quan trọng trong chương trình toán học phổ thông, đặc biệt là ở lớp 6 và lớp 7.

Giaitoan.edu.vn sẽ cung cấp cho bạn một cách tiếp cận dễ hiểu và đầy đủ về định nghĩa tỉ lệ nghịch, cùng với các ví dụ minh họa và bài tập thực hành để bạn có thể nắm vững kiến thức này.

Định nghĩa tỉ lệ nghịch

+ Nếu đại lượng \(y\) liên hệ với đại lượng \(x\) theo công thức \(y = \dfrac{a}{x}\) hay \(xy = a\) (với \(a\) là hằng số khác \(0\)) thì ta nói \(y\) tỉ lệ nghịch với \(x\) theo hệ số tỉ lệ \(a\).

+ Khi đại lượng y tỉ lệ nghịch với đại lượng \(x\) thì \(x\) cũng tỉ lệ nghịch với \(y\) và ta nói hai đại lượng đó tỉ lệ nghịch với nhau.

Ví dụ: Nếu \(y = \dfrac{2}{x}\) thì \(y\) tỉ lệ nghịch với \(x\) theo hệ số tỉ lệ là \(2\)

Chú ý: Khi \(y\) tỉ lệ nghịch với \(x\) theo hệ số tỉ lệ \(a\), ta cũng nói \(x\) tỉ lệ nghịch với \(y\) theo hệ số tỉ lệ \(a\)

Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Định nghĩa tỉ lệ nghịch tại chuyên mục giải sách giáo khoa toán 7 trên toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

Định nghĩa tỉ lệ nghịch

Hai đại lượng tỉ lệ nghịch là hai đại lượng mà tích của chúng luôn không đổi. Nếu gọi hai đại lượng đó là x và y, và k là hệ số tỉ lệ, thì ta có công thức:

x * y = k

Trong đó:

  • x là đại lượng này
  • y là đại lượng kia
  • k là hệ số tỉ lệ (một hằng số khác 0)

Ví dụ minh họa

Ví dụ 1: Một người nông dân có một mảnh đất hình chữ nhật. Nếu chiều dài mảnh đất tăng lên 2 lần thì chiều rộng phải giảm đi bao nhiêu lần để diện tích mảnh đất không đổi?

Giải:

Gọi chiều dài ban đầu là a, chiều rộng ban đầu là b, diện tích mảnh đất là S. Ta có S = a * b.

Nếu chiều dài tăng lên 2 lần, chiều dài mới là 2a. Gọi chiều rộng mới là b'. Để diện tích không đổi, ta có:

2a * b' = S = a * b

Suy ra b' = b / 2. Vậy chiều rộng phải giảm đi 2 lần.

Ví dụ 2: Một đoàn xe cần vận chuyển một số hàng hóa. Nếu số xe tăng lên 3 lần thì thời gian vận chuyển sẽ thay đổi như thế nào để khối lượng hàng hóa vận chuyển không đổi?

Giải:

Gọi số xe ban đầu là n, thời gian vận chuyển ban đầu là t, khối lượng hàng hóa là M. Ta có M = n * t.

Nếu số xe tăng lên 3 lần, số xe mới là 3n. Gọi thời gian vận chuyển mới là t'. Để khối lượng hàng hóa không đổi, ta có:

M = 3n * t' = n * t

Suy ra t' = t / 3. Vậy thời gian vận chuyển sẽ giảm đi 3 lần.

Tính chất của hai đại lượng tỉ lệ nghịch

  1. Khi một đại lượng tăng lên n lần thì đại lượng kia giảm xuống n lần.
  2. Tích của hai đại lượng tỉ lệ nghịch luôn là một hằng số (hệ số tỉ lệ).

Phân biệt tỉ lệ thuận và tỉ lệ nghịch

Đặc điểmTỉ lệ thuậnTỉ lệ nghịch
Khi đại lượng này tăng lênĐại lượng kia tăng lênĐại lượng kia giảm xuống
Khi đại lượng này giảm xuốngĐại lượng kia giảm xuốngĐại lượng kia tăng lên
Công thứcy = kxx * y = k

Ứng dụng của tỉ lệ nghịch trong thực tế

Tỉ lệ nghịch xuất hiện rất nhiều trong các bài toán thực tế, ví dụ:

  • Vận tốc và thời gian (với quãng đường không đổi)
  • Số công nhân và thời gian hoàn thành công việc (với khối lượng công việc không đổi)
  • Diện tích và chiều dài (với chu vi không đổi)

Bài tập luyện tập

Bài 1: Hai xe ô tô xuất phát từ hai địa điểm A và B cách nhau 120km. Xe thứ nhất đi với vận tốc 60km/h, xe thứ hai đi với vận tốc 40km/h. Hỏi sau bao lâu hai xe gặp nhau?

Bài 2: Một đội công nhân có 10 người làm một công việc trong 8 ngày. Nếu muốn hoàn thành công việc đó trong 5 ngày thì cần bao nhiêu người?

Kết luận

Hi vọng qua bài viết này, bạn đã hiểu rõ về định nghĩa tỉ lệ nghịch, các tính chất và ứng dụng của nó trong thực tế. Hãy luyện tập thêm nhiều bài tập để nắm vững kiến thức này nhé!

Tài liệu, đề thi và đáp án Toán 7