Bài 1.14 trang 22 Chuyên đề học tập Toán 12 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Hãy cùng khám phá lời giải chi tiết của bài 1.14 này ngay dưới đây!
Có ba chiếc túi I, II và III. Túi I có chứa 5 viên bị trắng và 5 viên bị đen cùng kích thước, khối lượng. Túi II và III mỗi túi có chứa 2 viên bị trắng và 8 viên bị đen. Bạn Minh lấy ngẫu nhiên từ mỗi túi một viên bi. Gọi X là số viên bị trắng lấy được. a) Lập bảng phân bố xác suất của X. b) Chứng minh rằng X không phải là biến ngẫu nhiên có phân bố nhị thức.
Đề bài
Có ba chiếc túi I, II và III. Túi I có chứa 5 viên bị trắng và 5 viên bị đen cùng kích thước, khối lượng. Túi II và III mỗi túi có chứa 2 viên bị trắng và 8 viên bị đen. Bạn Minh lấy ngẫu nhiên từ mỗi túi một viên bi. Gọi X là số viên bị trắng lấy được.
a) Lập bảng phân bố xác suất của X.
b) Chứng minh rằng X không phải là biến ngẫu nhiên có phân bố nhị thức.
Lời giải chi tiết
a) X là số viên bị trắng lấy được. Các giá trị có thể có của X là {0, 1, 2, 3}
Xác suất để lấy được 1 bi trắng ở các túi I, II, III lần lượt là 0,5; 0,2; 0,2.
- Biến cố {X = 0} là biến cố không có bi trắng lấy được từ một trong ba túi
\(P(X = 0) = 0,5.0.8.0,8 = 0,32\)
- Biến cố {X = 1} là biến cố có bi trắng lấy được từ một trong ba túi
\(P(X = 1) = 0,5.0,8.0,8 + 0,5.0,2.0,8 + 0,5.0,8.0,2 = 0,48\)
- Biến cố {X = 2} là biến cố có bi trắng lấy được từ hai trong ba túi
\(P(X = 2) = 0,5.0,2.0,8 + 0,5.0,8.0,2 + 0,5.0,2.0,2 = 0,18\)
- Biến cố {X = 3} là biến cố có bi trắng lấy được từ cả ba túi
\(P(X = 3) = 0,5.0,2.0,2 = 0,02\)
Ta có bảng phân bố xác suất:
b) Giả sử X là biến ngẫu nhiên có phân bố nhị thức. Khi đó, \(X \sim B(3,p)\)
\(\begin{array}{l}P(X = 3) = C_3^3.{p^3} = {p^3} = 0,02 \Rightarrow p \approx 0,27\\P(X = 0) = C_3^0.{\left( {1 - p} \right)^3} = {0,73^3} = 0,389 \ne 0,32\end{array}\)
Vậy X không là biến ngẫu nhiên có phân bố nhị thức.
Bài 1.14 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết một bài toán thực tế liên quan đến việc khảo sát hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:
(Nội dung lời giải chi tiết bài 1.14 sẽ được trình bày tại đây. Bao gồm các bước giải cụ thể, các phép tính và kết luận rõ ràng. Ví dụ:)
Ví dụ: Giả sử hàm số cần khảo sát là y = x3 - 3x2 + 2.
Ngoài bài 1.14, Chuyên đề học tập Toán 12 - Kết nối tri thức còn rất nhiều bài tập khác liên quan đến đạo hàm và ứng dụng của đạo hàm. Việc luyện tập thường xuyên sẽ giúp bạn nắm vững kiến thức và kỹ năng giải quyết các bài toán phức tạp hơn.
Một số bài tập tương tự bạn có thể tham khảo:
Bài 1.14 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn giải trên, bạn đã hiểu rõ cách giải bài tập này và tự tin giải các bài tập tương tự.