Logo Header
  1. Môn Toán
  2. Giải bài 1.8 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức

Giải bài 1.8 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức

Giải bài 1.8 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 1.8 trang 20 thuộc Chuyên đề học tập Toán 12 - Kết nối tri thức một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những phương pháp giải toán tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Trong một trò chơi, mỗi ván người chơi gieo đồng thời 3 xúc xắc cân đối, đồng chất. Nếu có ít nhất 2 xúc xắc xuất hiện mặt 6 chấm thì người chơi giành chiến thắng ván chơi đó. Bác Hưng tham gia chơi 3 ván. Tính xác suất để bác Hưng thắng ít nhất 2 ván.

Đề bài

Trong một trò chơi, mỗi ván người chơi gieo đồng thời 3 xúc xắc cân đối, đồng chất. Nếu có ít nhất 2 xúc xắc xuất hiện mặt 6 chấm thì người chơi giành chiến thắng ván chơi đó. Bác Hưng tham gia chơi 3 ván. Tính xác suất để bác Hưng thắng ít nhất 2 ván.

Phương pháp giải - Xem chi tiếtGiải bài 1.8 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức 1

Từ các dữ kiện đề bài ta xác định được biến ngẫu nhiên X có phân bố nhị thức. Ta áp dụng công thức của phân bố nhị thức và chú ý về phân bố nhị thức sẽ tính được các xác suất đề bài yêu cầu.

Lời giải chi tiết

Xác suất để một con xúc xắc xuất hiện mặt 6 chấm là \(\frac{1}{6}\).

Gọi X là số con xúc xắc xuất hiện mặt 6 chấm. Khi đó, \(X \sim B\left( {3;\frac{1}{6}} \right)\)

Bác Hưng thắng cuộc 1 ván khi X ≥ 2.

Xác suất để bác Hưng thắng cuộc 1 ván là:

\(P\left( {X \ge 2} \right) = C_3^2.{\left( {\frac{1}{6}} \right)^2}.{\left( {\frac{5}{6}} \right)^1} + C_3^3{\left( {\frac{1}{6}} \right)^3}{\left( {\frac{5}{6}} \right)^0} = \frac{2}{{27}}\)

Gọi Y là số ván thắng của bác Hưng. Khi đó, \(Y \sim B\left( {3;\frac{2}{{27}}} \right)\)

Xác suất để bác Hưng thắng ít nhất 2 ván là:

\(P(Y \ge 2) = C_3^2.{\left( {\frac{2}{{27}}} \right)^2}.{\left( {\frac{{25}}{{27}}} \right)^1} + C_3^3.{\left( {\frac{2}{{27}}} \right)^3}.{\left( {\frac{{25}}{{27}}} \right)^0} \approx 0,016\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1.8 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng soạn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1.8 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức: Tổng quan

Bài 1.8 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài toán này thường yêu cầu học sinh phân tích hàm số, tìm điểm cực trị, và khảo sát sự biến thiên của hàm số. Việc nắm vững các khái niệm và kỹ năng liên quan đến đạo hàm là vô cùng quan trọng để giải quyết bài toán này một cách hiệu quả.

Phân tích đề bài

Trước khi bắt đầu giải bài, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Thông thường, đề bài sẽ cung cấp một hàm số và yêu cầu chúng ta thực hiện một hoặc nhiều thao tác sau:

  • Tìm tập xác định của hàm số.
  • Tính đạo hàm của hàm số.
  • Tìm điểm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Vẽ đồ thị của hàm số.

Phương pháp giải bài 1.8 trang 20

Để giải bài 1.8 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức, chúng ta có thể áp dụng các phương pháp sau:

  1. Tính đạo hàm: Sử dụng các quy tắc tính đạo hàm cơ bản để tính đạo hàm của hàm số.
  2. Tìm điểm cực trị: Giải phương trình đạo hàm bằng 0 để tìm các điểm nghi ngờ là điểm cực trị. Sau đó, sử dụng dấu của đạo hàm để xác định loại điểm cực trị (cực đại hoặc cực tiểu).
  3. Khảo sát sự biến thiên: Dựa vào dấu của đạo hàm và các điểm cực trị để xác định khoảng đồng biến, nghịch biến của hàm số.
  4. Vẽ đồ thị: Sử dụng các thông tin đã tìm được để vẽ đồ thị của hàm số.

Ví dụ minh họa

Giả sử đề bài yêu cầu giải hàm số y = x3 - 3x2 + 2. Chúng ta sẽ thực hiện các bước sau:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2.
  3. Xác định loại điểm cực trị:
    • Tại x = 0, y' đổi dấu từ dương sang âm, nên x = 0 là điểm cực đại.
    • Tại x = 2, y' đổi dấu từ âm sang dương, nên x = 2 là điểm cực tiểu.
  4. Khảo sát sự biến thiên:
    • Hàm số đồng biến trên các khoảng (-∞, 0) và (2, +∞).
    • Hàm số nghịch biến trên khoảng (0, 2).

Lưu ý quan trọng

Khi giải bài 1.8 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức, bạn cần lưu ý những điều sau:

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Sử dụng các quy tắc tính đạo hàm một cách chính xác.
  • Kiểm tra lại kết quả sau khi giải bài.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể luyện tập thêm các bài tập tương tự sau:

  • Giải bài 1.9 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức.
  • Giải bài 1.10 trang 21 Chuyên đề học tập Toán 12 - Kết nối tri thức.

Kết luận

Bài 1.8 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức là một bài toán quan trọng giúp bạn rèn luyện kỹ năng về đạo hàm và khảo sát hàm số. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải quyết bài toán một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12