Bài 1.17 trang 22 Chuyên đề học tập Toán 12 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Hãy cùng khám phá lời giải chi tiết và các phương pháp tiếp cận bài toán này ngay sau đây!
Một hệ thống tin có n thành phần hoạt động độc lập với nhau. Xác suất hoạt động của mỗi thành phần là p. Hệ hoạt động nếu có ít nhất một nửa các thành phần hoạt động. Với giá trị nào của p thì hệ 5 thành phần tốt hơn hệ 3 thành phần?
Đề bài
Một hệ thống tin có n thành phần hoạt động độc lập với nhau. Xác suất hoạt động của mỗi thành phần là p. Hệ hoạt động nếu có ít nhất một nửa các thành phần hoạt động. Với giá trị nào của p thì hệ 5 thành phần tốt hơn hệ 3 thành phần?
Phương pháp giải - Xem chi tiết
Áp dụng chú ý về phân bố nhị thức.
Lời giải chi tiết
+ Với hệ 5 thành phần:
Gọi X là số thành phần hoạt động. Khi đó, \(X \sim B(5;p)\)
Hệ hoạt động nếu \(X \ge 3\). Theo chú ý về phân bố nhị thức ta có:
\(\begin{array}{l}P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)\\{\rm{ }} = C_5^3.{p^3}.{(1 - p)^2} + C_5^4.{p^4}.(1 - p) + {p^5}\\{\rm{ }} = 10.({p^3} - 2{p^4} + {p^5}) + 5.({p^4} - {p^5}) + {p^5}\\{\rm{ }} = 6{p^5} - 15{p^4} + 10{p^3}\end{array}\) + Với hệ 3 thành phần:
Gọi Y là số thành phần hoạt động. Khi đó, \(Y \sim B(3;p)\)
Hệ hoạt động nếu \(Y \ge 2\). Theo chú ý về phân bố nhị thức ta có:
\(\begin{array}{l}P(Y \ge 3) = P(Y = 2) + P(X = 3)\\{\rm{ }} = C_3^2.{p^2}.(1 - p) + {p^3}\\{\rm{ }} = 3{p^2} - 2{p^3}\end{array}\)
Để hệ 5 thành phần tốt hơn hệ 3 thành phần thì:
\(\begin{array}{l}{\rm{ }}6{p^5} - 15{p^4} + 10{p^3} > 3{p^2} - 2{p^3}\\ \Leftrightarrow 6{p^5} - 15{p^4} + 12{p^3} - 3{p^2} > 0\\ \Leftrightarrow 2{p^3} - 5{p^2} + 4p - 1 > 0{\rm{ (Do }}p \ge 0)\\ \Leftrightarrow {\left( {p - 1} \right)^2}.(2p - 1) > 0\\ \Leftrightarrow \left\{ \begin{array}{l}p \ne 1\\p > \frac{1}{2}\end{array} \right.{\rm{ }}\end{array}\)
Mà \(p \in \left[ {0;1} \right]\) nên \(\frac{1}{2} < p < 1\).
Bài 1.17 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về đạo hàm để tìm cực trị của hàm số. Để giải bài toán này một cách hiệu quả, chúng ta cần thực hiện các bước sau:
(Giả sử hàm số trong bài 1.17 là f(x) = x^3 - 3x^2 + 2)
Khoảng | x < 0 | 0 < x < 2 | x > 2 |
---|---|---|---|
f'(x) | + | - | + |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Ngoài bài 1.17, chuyên đề học tập Toán 12 - Kết nối tri thức còn nhiều bài tập tương tự yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết. Một số dạng bài tập thường gặp bao gồm:
Để giải các bài tập này, bạn cần nắm vững các quy tắc đạo hàm, phương pháp giải phương trình, và kỹ năng khảo sát hàm số bằng đạo hàm. Việc luyện tập thường xuyên với các bài tập khác nhau sẽ giúp bạn củng cố kiến thức và nâng cao kỹ năng giải toán.
Bài 1.17 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm. Bằng cách nắm vững kiến thức và phương pháp giải, bạn có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong kỳ thi.